如图,正方形ABCD与直角梯形ADEF所在的平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.(Ⅰ)求证:AC
如图,正方形ABCD与直角梯形ADEF所在的平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.(Ⅰ)求证:AC∥平面BEF;(Ⅱ)求四面体EBDF的体积...
如图,正方形ABCD与直角梯形ADEF所在的平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2AF=2.(Ⅰ)求证:AC∥平面BEF;(Ⅱ)求四面体EBDF的体积;(Ⅲ)求二面角F-BD-A的平面角的余弦值.
展开
1个回答
展开全部
(I)证明:如图所示,设BD∩AC=O,取DE的中点M,连接AM、OM.
则EM
DE=AF,又AF∥DE,∴四边形AFEM是平行四边形,∴AM∥FE.
又点O是正方形的对角线AC与BD的交点,∴DO=OB.
在△BDE中,OM∥BE,
又AM∩MO=M,∴平面ACM∥平面BFE,∴AC∥平面BEF.
(II)∵BA⊥AD,平面ABCD⊥平面ADEF,∴BA⊥平面ADEF,即BA是三棱锥B-DEF的高.
又S△DEF=
AD?DE=
×2×2=2.
∴V三棱锥B-DEF=
×BA×S△DEF=
×2×2=
.
(III)连接FO,∵FA⊥AD,平面ABCD⊥平面ADEF,∴FA⊥平面ABCD.
又BD⊥AC,∴BD⊥FO.
∴∠AOF是二面角F-BD-A的平面角,在Rt△AOF中,FO=
=
,
∴cos∠AOF=
=
=
,即为二面角F-BD-A的平面角的余弦值.
则EM
1 |
2 |
又点O是正方形的对角线AC与BD的交点,∴DO=OB.
在△BDE中,OM∥BE,
又AM∩MO=M,∴平面ACM∥平面BFE,∴AC∥平面BEF.
(II)∵BA⊥AD,平面ABCD⊥平面ADEF,∴BA⊥平面ADEF,即BA是三棱锥B-DEF的高.
又S△DEF=
1 |
2 |
1 |
2 |
∴V三棱锥B-DEF=
1 |
3 |
1 |
3 |
4 |
3 |
(III)连接FO,∵FA⊥AD,平面ABCD⊥平面ADEF,∴FA⊥平面ABCD.
又BD⊥AC,∴BD⊥FO.
∴∠AOF是二面角F-BD-A的平面角,在Rt△AOF中,FO=
AF2+AO2 |
3 |
∴cos∠AOF=
AO |
OF |
| ||
|
| ||
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询