怎样证明三角形两边之和大于第三边

 我来答
hypercontrol
高粉答主

2019-04-13 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:99%
帮助的人:410万
展开全部

证明方法如下:

如图,已知:三角形ABC,求证AC+BC>AB

证明:因为AB是点A到点C的距离,AC+BC是连接点A、点C的一条曲线长度。

根据两点之间线段最短得:AC+BC>AB

因此:三角形任意两边之和大于第三边。

扩展资料

一、求此三角形的周长C:

C=A+B+C

二、已知此三角形的底边为a,高为h,求此三角形的面积S:

S=ah/2 (面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。

三、基本性质:

1 、在平面上三角形的内角和等于180°(内角和定理)。

2 、在平面上三角形的外角和等于360° (外角和定理)。

3、 在平面上三角形的外角等于与其不相邻的两个内角之和。

推论:三角形的一个外角大于任何一个和它不相邻的内角。

参考资料来源:百度百科-三角形

小小芝麻大大梦
高粉答主

2019-04-25 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:982万
展开全部

最简单的证法:两点之间线段最短。

证明过程如下:

(1)因为AC之间是线段,而AB+CB不是直线。

(2)所以AB+CB>AC。

(3)所以三角形两边之和必然大于第三边。

两点之间线段最短是一个公理。又名线段公理。比如把纸上的两个点重合,把纸折叠起来,那两个点就重合了,距离无限近。

扩展资料:

常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。

按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

1、锐角三角形:三角形的三个内角中最大角小于90度。

2、直角三角形:三角形的三个内角中最大角等于90度。

3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。

其中锐角三角形和钝角三角形统称为斜三角形。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
tadeqing_
2015-05-18 · TA获得超过6227个赞
知道小有建树答主
回答量:1858
采纳率:80%
帮助的人:368万
展开全部
证明:
假设构成三角形的三条边分别为:a、b、c,且a、b、c大小任意;
①先证明:a+b>c;
因为a、b、c都为正数,所以要使得a+b>c成立,只需证明(a+b)²>c²,即:
(a+b)²-c²>0;
根据余弦定理:cosC=(a²+b²-c²)/2ab=((a+b)²-c²-2ab)/2ab;
移项得:(a+b)²-c²=2ab(2+cosB);
对于等式的右边:cosB在角B取值范围内的值为(-1,1);
所以1<(2+cosB)<2;
又因为a、b都是正数;
所以2ab(2+cosB)>0,即(a+b)²-c²>0,即a+b>c;
②对于a+c>b和b+c>a的情况证明是类似的;

综上所述,证得:三角形的任意两边之和大于第三边。

2、画图.
当2边之和极其接近第三边时,此时三角形顶角就极其接近180度,当相等时,顶角可以认为是180度,显然不可能,故三角形两边之和大于第三边.深入证明要用极限处理 赞同

3、两点之间线段最短
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sh5215125
高粉答主

推荐于2017-10-04 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:96%
帮助的人:5979万
展开全部

三角形任意两条边的和大于第三边。


设三角形ABC,求证:AB+BC>AC。

证明:

延长AB到D,使BD=BC,连接CD。

∵BD=BC,

∴∠D=∠BCD,

∵∠ACD=∠ACB+∠BCD>∠BCD,

∴∠ACD>∠D,

∵在△ADC中,∠ACD>∠D,

∴AD>AC(大角对大边),

∵AD=AB+BD=AB+BC,

∴AB+BC>AC。

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式