怎样证明三角形两边之和大于第三边
证明方法如下:
如图,已知:三角形ABC,求证AC+BC>AB
证明:因为AB是点A到点C的距离,AC+BC是连接点A、点C的一条曲线长度。
根据两点之间线段最短得:AC+BC>AB
因此:三角形任意两边之和大于第三边。
扩展资料
一、求此三角形的周长C:
C=A+B+C
二、已知此三角形的底边为a,高为h,求此三角形的面积S:
S=ah/2 (面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。
三、基本性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
参考资料来源:百度百科-三角形
最简单的证法:两点之间线段最短。
证明过程如下:
(1)因为AC之间是线段,而AB+CB不是直线。
(2)所以AB+CB>AC。
(3)所以三角形两边之和必然大于第三边。
两点之间线段最短是一个公理。又名线段公理。比如把纸上的两个点重合,把纸折叠起来,那两个点就重合了,距离无限近。
扩展资料:
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。
按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
假设构成三角形的三条边分别为:a、b、c,且a、b、c大小任意;
①先证明:a+b>c;
因为a、b、c都为正数,所以要使得a+b>c成立,只需证明(a+b)²>c²,即:
(a+b)²-c²>0;
根据余弦定理:cosC=(a²+b²-c²)/2ab=((a+b)²-c²-2ab)/2ab;
移项得:(a+b)²-c²=2ab(2+cosB);
对于等式的右边:cosB在角B取值范围内的值为(-1,1);
所以1<(2+cosB)<2;
又因为a、b都是正数;
所以2ab(2+cosB)>0,即(a+b)²-c²>0,即a+b>c;
②对于a+c>b和b+c>a的情况证明是类似的;
综上所述,证得:三角形的任意两边之和大于第三边。
2、画图.
当2边之和极其接近第三边时,此时三角形顶角就极其接近180度,当相等时,顶角可以认为是180度,显然不可能,故三角形两边之和大于第三边.深入证明要用极限处理 赞同
3、两点之间线段最短