离散数学问题: 求{1,2,3,4,6,12}上的偏序{(a,b)|a整除b}的覆盖关系。可以的话
离散数学问题:求{1,2,3,4,6,12}上的偏序{(a,b)|a整除b}的覆盖关系。可以的话,请帮助我如何理解最大相容类。...
离散数学问题:
求{1,2,3,4,6,12}上的偏序{(a,b)|a整除b}的覆盖关系。可以的话,请帮助我如何理解最大相容类。 展开
求{1,2,3,4,6,12}上的偏序{(a,b)|a整除b}的覆盖关系。可以的话,请帮助我如何理解最大相容类。 展开
3个回答
展开全部
排序关系是整数,那就去,相当于求子集就是 2^n-1个。
写出R的集合表示,先去掉所有的<a.a>形式的元素,再破坏传递性,若<a,b>,<b,c>,a,c>都在R中,则去掉<a,c>,最后把剩下的元素画图,<a,b>对应的边的始点a在下,终点b在上,这样得到的图就是哈斯图。
离散关系
(1)以“圆圈”表示元素;
(2)若x≤y,则y画在x的上层;
(3)若y覆盖x,则连线;
(4)不可比的元素可画在同一层。
例题:画出下列各关系的哈斯图
P={1,2,3,4},<P,≤>的哈斯图。
A={2,3,6,12,24,36},<A,整除>的哈斯图。
A={1,2,3,5,6,10,15,30},<A,整除>的哈斯图。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询