高等数学 不定积分👻👻👻👻 5
2个回答
展开全部
1、令x=3tant,dx=3sec^2tdt
原式=∫3sec^2tdt/81sec^4tdt
=(1/27)*∫cos^2tdt
=(1/54)*∫(1+cos2t)dt
=(1/54)*[t+(1/2)*sin2t]+C
=(1/54)*[arctan(x/3)+3x/(9+x^2)]+C,其中C是任意常数
3、原式=-(1/2)*∫sin3x*d[e^(-2x)]
=-(1/2)*[sin3x*e^(-2x)-3*∫e^(-2x)*cos3xdx]
=(-1/2)*sin3x*e^(-2x)-(3/4)*∫cos3x*d[e^(-2x)]
=(-1/2)*sin3x*e^(-2x)-(3/4)*cos3x*e^(-2x)-(9/4)*∫e^(-2x)*sin3xdx
所以原式=-(1/13)*e^(-2x)*(2sin3x+3cos3x)
5、原式=∫(cos^2x)^3dx
=(1/8)*∫(1+cos2x)^3dx
=(1/8)*∫[1+3cos2x+3cos^2(2x)+cos^3(2x)]dx
=(1/8)*[x+(3/2)*sin2x+(3/2)*x+(3/8)*sin4x]+(1/8)*∫cos(2x)[1-sin^2(2x)]dx
=(1/8)*[(5/2)x+(3/2)sin2x+(3/8)sin4x]+(1/16)*∫[1-sin^2(2x)]d(sin2x)
=(1/8)*[(5/2)x+(3/2)sin2x+(3/8)sin4x]+(1/16)*[sin2x-(1/3)*sin^3(2x)]+C
=(5/16)x+(3/16)sin2x+(3/64)sin4x+(1/16)sin2x-(1/48)sin^3(2x)+C
=(5/16)x+(1/4)sin2x+(3/64)sin4x-(1/48)sin^3(2x)+C,其中C是任意常数
7、令t=√(2x-1),x=(t^2+1)/2,dx=tdt
原式=∫tdt/[(t^2+1)^2/4*t]
=∫4dt/(t^2+1)^2
令t=tanu,dt=sec^2udu
原式=∫4sec^2udu/sec^4u
=4∫cos^2udu
=2*∫(1+cos2u)du
=2u+sin2u+C
=2arctant+2t/(1+t^2)+C
=2arctan[√(2x-1)]+√(2x-1)/x+C,其中C是任意常数
9、原式=∫(x-1+6)/(x^2-2x-1)dx
=(1/2)*∫d(x^2-2x-1)/(x^2-2x-1)+∫6/[(x-1)^2-2]dx
=(1/2)*ln|x^2-2x-1|+6ln|(x-1)+√(x^2-2x-1)|+C,其中C是任意常数
原式=∫3sec^2tdt/81sec^4tdt
=(1/27)*∫cos^2tdt
=(1/54)*∫(1+cos2t)dt
=(1/54)*[t+(1/2)*sin2t]+C
=(1/54)*[arctan(x/3)+3x/(9+x^2)]+C,其中C是任意常数
3、原式=-(1/2)*∫sin3x*d[e^(-2x)]
=-(1/2)*[sin3x*e^(-2x)-3*∫e^(-2x)*cos3xdx]
=(-1/2)*sin3x*e^(-2x)-(3/4)*∫cos3x*d[e^(-2x)]
=(-1/2)*sin3x*e^(-2x)-(3/4)*cos3x*e^(-2x)-(9/4)*∫e^(-2x)*sin3xdx
所以原式=-(1/13)*e^(-2x)*(2sin3x+3cos3x)
5、原式=∫(cos^2x)^3dx
=(1/8)*∫(1+cos2x)^3dx
=(1/8)*∫[1+3cos2x+3cos^2(2x)+cos^3(2x)]dx
=(1/8)*[x+(3/2)*sin2x+(3/2)*x+(3/8)*sin4x]+(1/8)*∫cos(2x)[1-sin^2(2x)]dx
=(1/8)*[(5/2)x+(3/2)sin2x+(3/8)sin4x]+(1/16)*∫[1-sin^2(2x)]d(sin2x)
=(1/8)*[(5/2)x+(3/2)sin2x+(3/8)sin4x]+(1/16)*[sin2x-(1/3)*sin^3(2x)]+C
=(5/16)x+(3/16)sin2x+(3/64)sin4x+(1/16)sin2x-(1/48)sin^3(2x)+C
=(5/16)x+(1/4)sin2x+(3/64)sin4x-(1/48)sin^3(2x)+C,其中C是任意常数
7、令t=√(2x-1),x=(t^2+1)/2,dx=tdt
原式=∫tdt/[(t^2+1)^2/4*t]
=∫4dt/(t^2+1)^2
令t=tanu,dt=sec^2udu
原式=∫4sec^2udu/sec^4u
=4∫cos^2udu
=2*∫(1+cos2u)du
=2u+sin2u+C
=2arctant+2t/(1+t^2)+C
=2arctan[√(2x-1)]+√(2x-1)/x+C,其中C是任意常数
9、原式=∫(x-1+6)/(x^2-2x-1)dx
=(1/2)*∫d(x^2-2x-1)/(x^2-2x-1)+∫6/[(x-1)^2-2]dx
=(1/2)*ln|x^2-2x-1|+6ln|(x-1)+√(x^2-2x-1)|+C,其中C是任意常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询