"特征值的和等于矩阵主对角线上元素之和"怎么证明
写出行列式|λE-A|
根据定义,行列式是不同行不同列的项的乘积之和
要得到λ^(n-1)只能取对角线上元素的乘积
(λ-a11)(λ-a22)...(λ-ann)
所以特征多项式的n-1次项系数是-(a11+a22+...+ann)
而特征多项式=(λ-λ1)(λ-λ2)...(λ-λn),n-1次项系数是-(λ1+λ2+...+λn)
所以a11+a22+...+ann=λ1+λ2+...+λn
扩展资料:
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。
非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
广义特征值
如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν
其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。
若B可逆,则原关系式可以写作 ,也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原表述来求解。
如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为 A矩阵未必是对称的。
参考资料:百度百科-特征值
首先写出行列式|λE-A|,根据定义,行列式是不同行不同列的项的乘积之和,
要得到λ^(n-1)只能取对角线上元素的乘积(λ-a11)(λ-a22)...(λ-ann),
所以特征多项式的n-1次项系数是-(a11+a22+...+ann),
而特征多项式=(λ-λ1)(λ-λ2)...(λ-λn),n-1次项系数是-(λ1+λ2+...+λn),
所以a11+a22+...+ann=λ1+λ2+...+λn。
由此可以证明特征值的和等于矩阵主对角线上元素之和。
扩展资料
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值或本征值。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。
若矩阵A可对角化,则其对角矩阵Λ的主对角线元素全部为A的特征值,其余元素全部为0。(一个矩阵的对角阵不唯一,其特征值可以换序。)
参考资料百度百科-特征值
写出行列式|λE-A|
根据定义,行列式是不同行不同列的项的乘积之和,
要得到λ^(n-1)只能取对角线上元素的乘积,
(λ-a11)(λ-a22)...(λ-ann),
所以特征多项式的n-1次项系数是-(a11+a22+...+ann),
而特征多项式=(λ-λ1)(λ-λ2)...(λ-λn),n-1次项系数是-(λ1+λ2+...+λn),
所以a11+a22+...+ann=λ1+λ2+...+λn。
扩展资料:
广义特征值
如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν
其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。
若B可逆,则原关系式可以写作 ,也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。
如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为 A矩阵未必是对称的。
参考资料:
可以按照我下面的公式试一下哦,希望可以帮助到你。
写出行列式|λE-A|
根据定义,行列式是不同行不同列的项的乘积之和
要得到λ^(n-1)只能取对角线上元素的乘积
(λ-a11)(λ-a22)...(λ-ann)
所以特征多项式的n-1次项系数是-(a11+a22+...+ann)
而特征多项式=(λ-λ1)(λ-λ2)...(λ-λn),n-1次项系数是-(λ1+λ2+...+λn)
所以a11+a22+...+ann=λ1+λ2+...+λn
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。
所谓“线性”,指的就是如下的数学关系:。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系的线性算子f都有哪几类,以及他们分别都有什么性质。
根据定义,行列式是不同行不同列的项的乘积之和
要得到λ^(n-1)只能取对角线上元素的乘积
(λ-a11)(λ-a22)...(λ-ann)
所以特征多项式的n-1次项系数是-(a11+a22+...+ann)
而特征多项式=(λ-λ1)(λ-λ2)...(λ-λn),n-1次项系数是-(λ1+λ2+...+λn)
所以a11+a22+...+ann=λ1+λ2+...+λn