复合函数的单调性:同增异减。具体含义求解释
同增异减指当一个复合函数的内函数与外函数单调性相同时,这个复合函数单调递增。反之,当一个复合函数的内函数与外函数单调性相反时,这个复合函数单调递减。
例如,y=ln(1/x)这个复合函数,它的外函数是y=ln(t),内函数是t=1/x,定义域为x>0。外函数y=ln(t)在定义域内单调递增,内函数t=1/x在定义域内单调递减,内外函数单调性相反,所以复合函数y=ln(1/x)在定义域内单调递减。
求函数的定义域主要应考虑以下几点:
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
同增异减指当一个复合函数的内函数与外函数单调性相同时,这个复合函数单调递增。
反之,当一个复合函数的内函数与外函数单调性相反时,这个复合函数单调递减。
例如,y=ln(1/x)这个复合函数,它的外函数是y=ln(t),内函数是t=1/x,定义域为x>0。
外函数y=ln(t)在定义域内单调递增,内函数t=1/x在定义域内单调递减,内外函数单调性相反,所以复合函数y=ln(1/x)在定义域内单调递减。
扩展资料
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
如果f(x)在某区域内单增,而此时g(x)单减,随着x的增加,g(x)减小,而f(u)(此时u=g(x))中u减小,所以f(u)减小,即f(g(x))减小。如果f(x)在某区域内单减,而此时g(x)单增,同理随着x增加,f(g(x))单减。这就是异减。