核酸内切酶的作用及分类
限制性核酸内切酶(以下简称限制性酶)是一类识别双链DNA中特定核苷酸序列的DNA水解酶,以内切方式水解DNA,产生5’-P和3’-OH末端。 1952年Luria等及1953年Bertani等研究噬菌体时发现了宿主控制性现象。Arber及其同事用放射性同位素标记证明,噬菌体在新品系中的损害伴随有其DNA的降解,但宿主自己的DNA并不降解,据此他们提出了限制 - 修饰酶假说。对于一个宿主细胞,限制性酶及 DNA甲基化酶是其细胞中的一对酶,它们对DNA底物有相同的识别顺序,但有相反的生物功能,限制性酶的功能是在DNA分子内部拆卸水解,甲基化酶是修饰,DNA分子经修饰后,就可逃避限制性酶的识别,而甲基化酶只修饰宿主自身的DNA,从而避免了限制性酶对自身DNA的破坏。
限制性酶主要分为三种类型:Ⅰ型限制酶为复合功能酶,具有限制-修饰两种功能,但在 DNA链上没有固定的切割位点,一般在离切割位点1kb到几kb的地方随机切割,不产生特异性片段。Ⅲ型酶与Ⅰ型酶基本相似,不同的是Ⅲ型酶有特异性的切割位点,但这两类酶对 DNA酶切分析的意义不大,通常所说的限制性内切酶是指Ⅱ型酶,它能够识别与切割DNA链上的特定的核苷酸顺序,产生特异性的DNA片段。
2.识别序列及消化产物的末端结构 限制性酶的识别序列,大部分具有双轴对称性结构或称回文序列,如EcoRI的识别序列为:
GAA
TTC
横轴
CTT
AAG
纵轴
将纵轴一侧的序列以横轴为中心旋转180°,则纵轴两侧的序列相互对称,这种结构又称为双重对称结构。大部分酶的识别序列长度为4-6个核苷酸。4核苷酸序列在DNA链中出现频率高,对一随机排列的DNA分子来说,理论值为1/44,因此4核苷酸识别序列的限制性酶在DNA链上切点多,产生片段的数目多,长度短,显示出酶的特异性较低。对于5和6核苷酸识别序列的酶,出现频率分别为1/45和1/46 ,因此,6核苷酸序列在DNA中出现频率低,酶的特异性强,而8核苷酸识别位点在DNA链中出现机率更低(1/48 ),特导性更强,可提供更长的DNA片段。一部分限制性酶具有非典型的双轴对称性序列,其回文识别序列被个或几个其他核苷酸所间隔,如BglⅠ,这种酶的特异性比识别长度相同的典型回文序列的酶略高。另外有些限制性酶(约10种,如BbVⅠ等),其识别序列不表现为回文结构,它们降解双链DNA时,酶切点大部分不在识别序列内,而是与识别序列相距5至13个核苷酸残基不等。
限制性酶切片段的末端结构:限制性酶不但有特定的识别序列,并且任何一种酶切割 DNA链时,总是水解核苷酸3’和5’-磷酸二酯键的3’位磷酸酯键,使产物的5’端带磷酸单酯基团,而3’末端则为游离羟基。因此某一种酶的全部产物的末端具有相同的结构。根据切点序列的结构特点,产物的末端可分为粘性末端和平末端两类。粘性末端指酶切后DNA片段末端带有1-4个核苷酸残基的单链结构,而片段两端突出的单链具有互补性,突出的单链因部位的不同,又可分为5’-与3’-粘性末端两种,突出的单链带5’磷酸单酯的称5’-粘性末端,而突出的单链含3’-羟基则称3’-粘性末端。平末端指酶切后,片段为齐头末端结构。在DNA体外重组时,粘性末端是DNA连接酶的有效底物,有很高的连接效率。