线性最小二乘估计的概述

 我来答
爽快且通达的小萨摩7359
2016-05-31 · 超过56用户采纳过TA的回答
知道答主
回答量:178
采纳率:25%
帮助的人:63万
展开全部

线性最小二乘估计
linear least squares estimate
以误差的平方和最小为准则根据观测数据估计线性模型中未知参数的一种基本参数估计方法。1794年德国数学家C.F.高斯在解决行星轨道猜测问题时首先提出最小二乘法。它的基本思路是选择估计量使模型(包括静态或动态的,线性或非线性的)输出与实测输出之差的平方和达到最小。这种求误差平方和的方式可以避免正负误差相抵,而且便于数学处理(例如用误差的绝对值就不便于处理)。线性最小二乘法是应用最广泛的参数估计方法,它在理论研究和工程应用中都具有重要的作用,同时它又是许多其他更复杂方法的基础。线性最小二乘法是最小二乘法最简单的一种情况,即模型对所考察的参数是线性的。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式