已知三角形ABC的三边a>b>c且a+c=2b,A-C=∏/2,求a:b:c 看得我一头雾水!!帮帮忙啊!
展开全部
a+c=2b
有sinA+sinC=2sinB
左边和差化积,A=[(A+C)/2]+[(A-C)/2] C=[(A+C)/2]-[(A-C)/2]
sinA+sinC=2sin[(A+C)/2]cos[(A-C)/2]
=2sin[(π-B)/2]cos(π/4)=根号2sin[(π-B)/2]=根号2cos(B/2)
所以2sinB=根号2cos(B/2)
左边=4sin(B/2)cos(B/2) cos(B/2)≠0
所以sin(B/2)=根号2/4 sinB=根号7/8
A-C=∏/2
所以sinC=-cosA
sinA+sinC=sinA-cosA=根号7/4
再解出sinA sinC 就行了
有sinA+sinC=2sinB
左边和差化积,A=[(A+C)/2]+[(A-C)/2] C=[(A+C)/2]-[(A-C)/2]
sinA+sinC=2sin[(A+C)/2]cos[(A-C)/2]
=2sin[(π-B)/2]cos(π/4)=根号2sin[(π-B)/2]=根号2cos(B/2)
所以2sinB=根号2cos(B/2)
左边=4sin(B/2)cos(B/2) cos(B/2)≠0
所以sin(B/2)=根号2/4 sinB=根号7/8
A-C=∏/2
所以sinC=-cosA
sinA+sinC=sinA-cosA=根号7/4
再解出sinA sinC 就行了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询