
图片里公式是如何推出来的? 20
1个回答
展开全部
证明:令x=π-t,则x由0到π,t由π到0,dx=-dt
原式记为I
则I=-(积分区间π到0)∫(π-t)f(sin(π-t)dt
=-(积分区间π到0)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫πf(sin(t)dt-I
所以2I=(积分区间0到π)∫πf(sin(t)dt
即I=(π/2)∫f(sint)dt=(π/2)∫f(sinx)dx
原式记为I
则I=-(积分区间π到0)∫(π-t)f(sin(π-t)dt
=-(积分区间π到0)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫πf(sin(t)dt-I
所以2I=(积分区间0到π)∫πf(sin(t)dt
即I=(π/2)∫f(sint)dt=(π/2)∫f(sinx)dx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询