直线与椭圆是否存在相切的位置关系
2个回答
展开全部
存在,以下为椭圆切线方程求法
若椭圆的方程为x^2/a^2+y^2/b^2=1,点P(x0,y0)在椭圆上,
则过点P椭圆的切线方程为
(x·x0)/a^2 + (y·y0)/b^2=1.★yanji
证明:
椭圆为x^2/a^2+y^2/b^2=1,切点为(x0,y0),则x0^2/a^2+y0^2/b^2=1 ...(1)
对椭圆求导得y'=-b^2·x/a^2·y, 即切线斜率k=-b^2·x0/a^2·y0,
故切线方程是y-y0=-b^2·x0/a^2·y0*(x-x0),将(1)代入并化简得切线方程为x0·x/a^2+y0·y/b^2=1
更多追问追答
追问
但是有的资料上说不存在相切,只存在相离和相交
但是有的资料上说不存在相切,只存在相离和相交
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |