已知x+y=5x^2+y^2=13求代数式x^2y+2xy^2+xy^2的值
1个回答
展开全部
因为 x+y=5, x^2+y^2=13
所以 2xy=(x+y)^2-(x^2+y^2)
=5^2-13
=25-13
=12
xy=6
所以 x=2, y=3 或 x=3, y=2
所以 当 x=2, y=3 时, 当 x=3, y=2 时,
x^2y+2xy^2+xy^2 x^2y+2xy^2+xy^2
=xy(x+2y+y) =xy(x+2y+y)
=xy(x+y+y) =xy(x+y+y)
=6X(5+3) =6X(5+2)
=48 =42.
所以 2xy=(x+y)^2-(x^2+y^2)
=5^2-13
=25-13
=12
xy=6
所以 x=2, y=3 或 x=3, y=2
所以 当 x=2, y=3 时, 当 x=3, y=2 时,
x^2y+2xy^2+xy^2 x^2y+2xy^2+xy^2
=xy(x+2y+y) =xy(x+2y+y)
=xy(x+y+y) =xy(x+y+y)
=6X(5+3) =6X(5+2)
=48 =42.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询