
2个回答
展开全部
令t=arcsinx,则x=sint
dx=d(sint)=(cost)dt
所以∫(arcsinx)²dx=∫t²(cost)dt=∫t²d(sint)
=t²sint-∫sintd(t²)(注:此处用了分部积分法)
=t²sint-2∫(sint)td(t)
=t²sint+2∫td(cost)
=t²sint+2(tcost-∫(cost)dt)(注:此处用了分部积分法)
=t²sint+2tcost-2∫(cost)dt
=t²sint+2tcost-2sint+c(c为积分常数)
还原变量得:∫(arcsinx)²dx=x(arcsinx)²+2(arcsinx)(√(1-x^2))-2x+c(c为积分常数)
dx=d(sint)=(cost)dt
所以∫(arcsinx)²dx=∫t²(cost)dt=∫t²d(sint)
=t²sint-∫sintd(t²)(注:此处用了分部积分法)
=t²sint-2∫(sint)td(t)
=t²sint+2∫td(cost)
=t²sint+2(tcost-∫(cost)dt)(注:此处用了分部积分法)
=t²sint+2tcost-2∫(cost)dt
=t²sint+2tcost-2sint+c(c为积分常数)
还原变量得:∫(arcsinx)²dx=x(arcsinx)²+2(arcsinx)(√(1-x^2))-2x+c(c为积分常数)
展开全部
令arcsinx=u,则x=sinu
∫(arcsinx)²dx
=∫u²d(sinu)
=u²sinu-∫sinu(du²)
=u²sinu-∫2u·sinudu
=u²sinu+2∫ud(cosu)
=u²sinu+2ucosu-2∫cosudu
=u²sinu+2ucosu-2sinu+C
=x·(arcsinx)²+2√(1-x²)·arcsinx-2x+C
∫(arcsinx)²dx
=∫u²d(sinu)
=u²sinu-∫sinu(du²)
=u²sinu-∫2u·sinudu
=u²sinu+2∫ud(cosu)
=u²sinu+2ucosu-2∫cosudu
=u²sinu+2ucosu-2sinu+C
=x·(arcsinx)²+2√(1-x²)·arcsinx-2x+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |