微积分,
1个回答
展开全部
原式=∫(0,π) f(x)sinxdx+∫(0,π) f''(x)sinxdx
=∫(0,π) f(x)sinxdx+∫(0,π) sinxd[f'(x)]
=∫(0,π) f(x)sinxdx+sinx*f'(x)|(0,π)-∫(0,π) f'(x)cosxdx
=∫(0,π) f(x)sinxdx-∫(0,π) cosxd[f(x)]
=∫(0,π) f(x)sinxdx-cosx*f(x)|(0,π)-∫(0,π) f(x)sinxdx
=cos0*f(0)-cosπ*f(π)
=3+2
=5
=∫(0,π) f(x)sinxdx+∫(0,π) sinxd[f'(x)]
=∫(0,π) f(x)sinxdx+sinx*f'(x)|(0,π)-∫(0,π) f'(x)cosxdx
=∫(0,π) f(x)sinxdx-∫(0,π) cosxd[f(x)]
=∫(0,π) f(x)sinxdx-cosx*f(x)|(0,π)-∫(0,π) f(x)sinxdx
=cos0*f(0)-cosπ*f(π)
=3+2
=5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询