求不定积分,第四题的第四小题
展开全部
∫e^xsinxcosxdx
=1/2∫e^xsin2xdx
=1/2∫sin2xde^x
=1/2(e^xsin2x-∫e^xdsin2x)
=1/2(e^xsin2x-2∫e^xcos2xdx)
=1/2(e^xsin2x-2∫cos2xde^x)
=1/2(e^xsin2x-2e^xcos2x+2∫e^xdcos2x)
=1/2(e^xsin2x-2e^xcos2x-4∫e^xsin2xdx)
于是:
5/2∫e^xsin2xdx = 1/2(e^xsin2x-2e^xcos2x)
所以:
∫e^xsinxcosxdx = 1/10(e^xsin2x-2e^xcos2x) + C
=1/2∫e^xsin2xdx
=1/2∫sin2xde^x
=1/2(e^xsin2x-∫e^xdsin2x)
=1/2(e^xsin2x-2∫e^xcos2xdx)
=1/2(e^xsin2x-2∫cos2xde^x)
=1/2(e^xsin2x-2e^xcos2x+2∫e^xdcos2x)
=1/2(e^xsin2x-2e^xcos2x-4∫e^xsin2xdx)
于是:
5/2∫e^xsin2xdx = 1/2(e^xsin2x-2e^xcos2x)
所以:
∫e^xsinxcosxdx = 1/10(e^xsin2x-2e^xcos2x) + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询