计算12题的定积分
1个回答
展开全部
∫(1到4) 1 / √(1 + √x) dx
= ∫ 2√x / [2√x * (1 + √x)] dx,上下乘以2√x,因为1/(2√x) = (√x)'
= 2∫ √x / (1 + √x) d√x
= 2∫ (√x + 1 - 1) / (1 + √x) d√x
= 2∫ [1 - 1 / √(1 + √x)] d√x
= 2∫ d√x - 2∫ d(√x + 1) / (1 + √x)
= 2√x - 2ln|1 + √x|
= [2√4 - 2ln(1+√4)] - [2√1 - 2ln(1+√1)]
= 4 - 2ln3 - 2 + 2ln2
= 2 + 2ln2 - 2ln3
= 2[1 + ln(2/3)]
= ∫ 2√x / [2√x * (1 + √x)] dx,上下乘以2√x,因为1/(2√x) = (√x)'
= 2∫ √x / (1 + √x) d√x
= 2∫ (√x + 1 - 1) / (1 + √x) d√x
= 2∫ [1 - 1 / √(1 + √x)] d√x
= 2∫ d√x - 2∫ d(√x + 1) / (1 + √x)
= 2√x - 2ln|1 + √x|
= [2√4 - 2ln(1+√4)] - [2√1 - 2ln(1+√1)]
= 4 - 2ln3 - 2 + 2ln2
= 2 + 2ln2 - 2ln3
= 2[1 + ln(2/3)]
更多追问追答
追问
第五行怎么变成第六行啊?根号x咋没了?
第六行1减1不等于0了吗
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询