证明,当x>4,时,2^x>x^2,详细过程

 我来答
教育小百科达人
2019-04-04 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:478万
展开全部

证明过程如下:

令f(x)=2^x/x²,(x≥4)

f'(x)=[(ln2)·2^x·x²-2x·2^x]/(x²)²

=[(ln2)·x-2]·x·2^x/x⁴

2^x恒>0。

x>4>0,x⁴>0

ln2>ln√e=½,x≥4,(ln2)x>2,(ln2)x-2>0

f'(x)>0

f(4)=2⁴/4²=1

x>4时,f(x)>f(4),f(x)>1

2^x/x²>1

2^x>x²

不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,> 中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

扩展资料:

整式不等式两边都是整式(即未知数不在分母上)。

一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-X>0

同理:二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。

①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。

③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。

参考资料来源:百度百科——不等式

小小芝麻大大梦
高粉答主

2019-03-28 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:991万
展开全部

证明过程如下:

令f(x)=2^x/x²,(x≥4)

f'(x)=[(ln2)·2^x·x²-2x·2^x]/(x²)²

=[(ln2)·x-2]·x·2^x/x⁴

2^x恒>0。

x>4>0,x⁴>0

ln2>ln√e=½,x≥4,(ln2)x>2,(ln2)x-2>0

f'(x)>0

f(4)=2⁴/4²=1

x>4时,f(x)>f(4),f(x)>1

2^x/x²>1

2^x>x²

扩展资料:

不等式的证明方法

(1)比较法:作差比较。

(2)反证法:正难则反。

(3)放缩法:将不等式一侧适当的放大或缩小以达证题目的。

(4)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。

重要不等式:

1、切比雪夫不等式,切比雪夫不等式有两个:

⑴设存在数列a1,a2,a3.....an和b1,b2,b3......bn满足a1≤a2≤a3≤.....≤an和b1≤b2≤b3≤......≤bn

那么,∑aibi≥(1/n)(∑ai)(∑bi)。

⑵设存在数列a1,a2,a3,.....,an和b1,b2,b3,......,bn满足a1≤a2≤a3≤.....≤an和b1≥b2≥b3≥......≥bn

那么,∑aibi≤(1/n)(∑ai)(∑bi)。

2、琴生不等式

设f(x)为上凸函数,则f[(x1+x2+……+xn)/n]≥[f(x1)+f(x2)+……+f(xn)]/n,称为琴生不等式(幂平均)。

加权形式为:

f[(a1x1+a2x2+……+anxn)]≥a1f(x1)+a2f(x2)+……+anf(xn),其中:

ai≥0(i=1,2,……,n),且a1+a2+……+an=1。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2020-11-02 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1649万
展开全部

详情如图所示

有任何疑惑,欢迎追问

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xuzhouliuying
高粉答主

2017-02-24 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
证:
令f(x)=2^x/x²,(x≥4)
f'(x)=[(ln2)·2^x·x²-2x·2^x]/(x²)²
=[(ln2)·x-2]·x·2^x/x⁴
2^x恒>0,
x>4>0,x⁴>0
ln2>ln√e=½,x≥4,(ln2)x>2,(ln2)x-2>0
f'(x)>0
f(4)=2⁴/4²=1
x>4时,f(x)>f(4),f(x)>1
2^x/x²>1
2^x>x²
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
善解人意一
高粉答主

2017-02-24 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.6万
采纳率:83%
帮助的人:7525万
展开全部


待续

追答

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式