反函数二阶导数公式是怎么推导出来的
推导步骤如下:
y=f(x)
要求d^2x/dy^2
dx/dy=1/(dy/dx)=1/y'
d^2x/dy^2=d(dx/dy)/dx*dx/dy
=-y''/y'^2*1/y'
=-y''/y'^3
拓展资料:
反函数的导函数:
如果函数x=f(y)在区间Iy内单调、可导且f '(y)不等于零,则它的反函数y=f-1(x)在区间 内也可导,且 或 ,用自然语言来说就是,反函数的导数,等于直接函数导数的倒数。这话有点绕,不过应该能读懂,这个似乎就进一步揭示了反函数符号的意义。
在这里要说明的是,y=f(x)的反函数应该是x=f-1(y)。只不过在通常的情况下,我们将x写作y,y写作x,以符合习惯。所以,虽然反函数和直接函数不互为倒数,但是各自导函数求出后,二者却是互为倒数。
参考资料:百度百科-反函数
过程如下:
y=f(x)
要求d^2x/dy^2
dx/dy=1/(dy/dx)=1/y'
d^2x/dy^2=d(dx/dy)/dx*dx/dy
=-y''/y'^2*1/y'
=-y''/y'^3
拓展资料:
二阶函数的代数记法
二阶导数记作
即y''=(y')'。
例如:y=x²的导数为y'=2x,二阶导数即y'=2x的导数为y''=2。
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f (y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。
参考资料:百度百科-反函数
要求d^2x/dy^2
dx/dy=1/(dy/dx)=1/y'
d^2x/dy^2=d(dx/dy)/dx*dx/dy
=-y''/y'^2*1/y'
=-y''/y'^3