已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b-c)=0则|c|的最大值是?

要详细解答不要复制我看得出来谢谢... 要详细解答 不要复制 我看得出来 谢谢 展开
 我来答
为知读书
2009-08-12 · TA获得超过2.2万个赞
知道大有可为答主
回答量:3191
采纳率:33%
帮助的人:3274万
展开全部
由题意得:a·b=0
(a-c)(b-c)=0
a·b-a·c-b·c+c^2=0
c^2-ac-bc=0
|c|^2-|a||c|cosA-|b||c|cos(∏/2-A)=0
|c|^2-|a||c|cosA-|b||c|sinA=0
|c|(|c|-|a|cosA-|b|sinA)=0
|c|=0(舍),|c|=|a|cosA+|b|sinA=cosA+sinA
因为0<A<∏/2
根据sin和cos的图像,得知:
A最大为∏/4,所以|c|=2^(1/2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式