家长说小学生考试题跟其它区的题不一样起争执怎么办
小学生考试答题技巧汇总
一、自我暗示、消除焦虑
考试一旦怯场,面对试题就会头脑空空,平时熟悉的公式、定理回忆起来也变得困难,注意力不能集中,等到心情平静下来,已浪费了许多时间,看到许多未作的题目,则会再次紧张,形成恶性循环。这时要迅速进行心理调节,使自己快速进入正常应考状态,可采用以下两种方法调节焦虑情绪:
①、自我暗示法。用平时自己考试中曾有优异成绩来不断暗示自己:我是考生中的佼佼者;我一定能考得理想的成绩;我虽然有困难的题目,但别人不会做的题目也很多。
②、决战决胜法。视考场为考试的大敌,用过去因怯场而失败的教训鞭策自己决战决胜。
二、整体浏览,了解卷情
拿到试卷后,在规定的地方写好姓名和准考证号后,先对试卷进行整体感知,看看这份试卷共多少页、总题量是多少、分哪几大部分、有哪几种题型。这样不仅可以要防止试卷错误,尽早调换,避免不必要的损失;而且通过对全卷作的整体把握,能尽早定下作战方案。重要的是初步了解下试卷的难易度,以便自己合理安排答题时间,避免会做的没有做,不会做的却浪费了时间的情况出现。
三、“两先两后”,合理安排
试卷的难易、生熟占分高低大体心中有数了,情绪也稳定了,此时大脑里的思维状态由启动阶段进入亢奋阶段。只要听到铃声一响就可开始答题了。解题应注意“两先两后”的安排:
①、先易后难
一般来说,一份成功的试卷,它上面的题目的排列应是由易到难的,但这是命题者的主观愿望,具体情况却因人而异。同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。
②、先熟后生
通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。万一哪个题目偏难,也不要惊慌失措,而要冷静思考,变生为熟,想一想能不能把所谓的生题化解为若干个熟悉的小问题,或转化为熟悉的题型。总之要记住一句名言:“我易人易,我不大意;我难人难,我不畏难”。
四、“一慢一快”,慢中求快
一慢一快,指的是审题要慢要细,做题要快。题目本身是解题方法、技巧的信息源,特别是每卷必有的选择题中的题干中有许多解答该题的规定性。例如:选出完全正确的一项还是错误的一项,选一项还是两项等,这些一定要在读题时耐心地把它们读透,弄清要求,否则是在做无用功。考卷大多是容易的,在大家容易的情况下就看谁更细心,而细心最主要的就是审题时要慢要细心。
当找到解决问题的思路和方法后,答题时速度应快。做到这一点可从两方面入手,一、书写速度应快,不慢慢吞吞。二、书写的内容要简明扼要,不拖泥带水,噜嗦重复,尽量写出得分点就行了。
五、分段得分,每分必争
考试中经常有的同学答案是错误的,但依然得了分,这说明写出了得分点,而有的同学甚至一点解题思路都没有,只是将公式进行了罗列,也依然得到了分,都是同样的道理。尤其是有问的解答中,如果第一个不会千万不要放弃,一定要浏览完全部的问题,做到每分必争,切忌出现大量空题的情况。
“分段得分”的两种情况
对于会做的题目。对会做的题目要解决对而不全的老大难问题,如果出现跳步往往就会造成丢分的情况,因此,答题过程一定规范,重要步骤不可遗漏,这就是分段得分。
对于不会做的题目,这里又分两种情况,一种是一大题分几小题的,一种是一大题只有一问的。对于前者,我们的策略是“跳步解答”,第一小题答不出来,就把第一小题作为已知条件,用来解答第二小题,只要答得对,第二小题照样得分。对于后者,我们的策略是“缺步解题”,能演算到什么程度就什么程度,不强求结论。这样可以最大程度地得到分数。
六、重视检查环节
答题过程中,尽量立足于一次成功,不出差错。但百密不免一疏,如果自己的考试时间还有些充裕,那么根不可匆忙交卷,而应作耐心的复查。将模棱两可的及未做的题目最后要进行检查、作答,特别是填空题、选择题不要留空白。
2017-07-05
★怎样才能学好数学?
要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。
究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生的自我上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。帮助学生认真运算出错的具体原因,是提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点:
①情绪稳定,算理明确,过程合理,速度均匀,结果准确;
②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。
★什么是理解?
按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。
理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆?
一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。
1、如何保证数量?
① 选准一本与教材同步的书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。
③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。
2、如何保证质量?
①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相,有没有出现一些新的功能或用途?再现思维活动经过,想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。
②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
总而言之,只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,我们就一定能早日进入数学学习的王国。