y=3sin4分之X的最小正周期
y=3sin4分之X的最小正周期是8π。
计算方法如下:
y=asinbx的最小正周期=|2π/b|。
y=3sin(x/4)中a=3,b=1/4,最小正周期=|2π/b|=2π/(1/4)=8π。
扩展资料:
对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得正弦函数和余弦函数的最小正周期是2π。
y=Asin(ωx+φ), T=2π/ω(其中ω必须>0)
对定义域内的每一个x,当x增加到x+π/2时,函数值重复出现,因此函数的最小正周期是π/2.(如果f(x+T)=f(x),那么T叫做f(x)的周期)。
函数为两个三角函数相加,若角频率之比为有理数,则函数有最小正周期。
设f(x)与g(x)是定义在公共集合上的两个三角周期函数,T1、T2分别是它们的周期,且T1≠T2,则f(x)±g(x)的最小正周期T1、T2的最小公倍数,分数的最小公倍数=T1,T2分子的最小公倍数/T1、T2分母的最大公约数。
求几个正弦、余弦和正切函数的最小正周期,可以先求出各个三角函数的最小正周期,然后再求期最小公倍数T,即为和函数的最小正周期 。
几个分数的最小公倍数,我们约定为各分数的分子的最小公倍数为分子,各分母的最大公约数为分母的分数。
通过对所给函数式进行恒等变换,使其转化为简单的情形,再运用定义法、公式法或图象法等求出其最小正周期。
参考资料来源:百度百科-最小正周期
2020-07-03 广告
广告 您可能关注的内容 |