
2个回答
展开全部
题中微分方程即 f' - f/x = 3x/2 是一阶线性微分方程,则
f(x) = e^(∫dx/x) [∫(3x/2)e^(-∫dx/x)dx + C]
= x [∫(3/2)dx + C] = (3/2)x^2 + Cx, 过原点 O,
S = ∫<0, 1> [(3/2)x^2 + Cx]dx = [(1/2)x^3+(C/2)x^2]<0, 1>
= 1/2+C/2 = 3, C = 5,
f(x) = (3/2)x^2 + 5x
V = π∫<0, 1> [(3/2)x^2 + 5x]^2 dx
= π∫<0, 1> [(9/4)x^4+15x^3+25x^2] dx
= π[(9/20)x^5 +(15/4)x^4+(25/3)x^3]<0, 1> = 188π/15
f(x) = e^(∫dx/x) [∫(3x/2)e^(-∫dx/x)dx + C]
= x [∫(3/2)dx + C] = (3/2)x^2 + Cx, 过原点 O,
S = ∫<0, 1> [(3/2)x^2 + Cx]dx = [(1/2)x^3+(C/2)x^2]<0, 1>
= 1/2+C/2 = 3, C = 5,
f(x) = (3/2)x^2 + 5x
V = π∫<0, 1> [(3/2)x^2 + 5x]^2 dx
= π∫<0, 1> [(9/4)x^4+15x^3+25x^2] dx
= π[(9/20)x^5 +(15/4)x^4+(25/3)x^3]<0, 1> = 188π/15
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询