1个回答
展开全部
得到结果或者条件不符合时候停止求导
洛必达法则(L'Hôpital's rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。法国数学家洛必达(Marquis de l'Hôpital)在他1696年的著作《阐明曲线的无穷小分析》(Analyse des infiniment petits pour l'intelligence des lignes courbes)发表了这法则,因此以他为命名。但一般认为这法则是由瑞士数学家约翰·伯努利(Johann Bernoulli)首先发现,因此也被叫作伯努利法则(Bernoulli's rule)。
在着手求极限以前,首先要检查是否满足 或 型构型,否则滥用洛必达法则会出错(其实 形式分子并不需要为无穷大,只需分母为无穷大即可)。当不存在时(不包括 情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |