设数列{an}满足a1+3a2+...+(2n-1)an=2n(1)求{an}的通项公式(2)求数列{an/2n+1}的前n项和

设数列{an}满足a1+3a2+...+(2n-1)an=2n(1)求{an}的通项公式(2)求数列{an/2n+1}的前n项和,过程详细点,谢谢。... 设数列{an}满足a1+3a2+...+(2n-1)an=2n(1)求{an}的通项公式(2)求数列{an/2n+1}的前n项和,过程详细点,谢谢。 展开
 我来答
颜代7W
高粉答主

2019-07-05 · 每个回答都超有意思的
知道小有建树答主
回答量:505
采纳率:100%
帮助的人:12.7万
展开全部

{an}的通项公式为an=2/(2n-1)。数列{an/2n+1}的前n项和为2n/(2n+1)。

解:

1、因为a1+3a2+...+(2(n-1)-1)an-1+(2n-1)an=2n         ①

那么a1+3a2+...+(2(n-1)-1)an-1=2(n-1)                           ②

由①-②可得,(2n-1)an=2n-2(n-1) =2

那么an=2/(2n-1)

即{an}的通项公式为an=2/(2n-1)。

2、令数列bn=an/2n+1,

那么bn=2/((2n-1)*2n+1)=1/(2n-1)-1/(2n+1),

那么数列{an/2n+1}的前n项和就是数列bn的前n项和。

则b1+b2+b3+...+bn-1+bn

=(1/1-1/3)+(1/3-1/5)+(1/5-1/7)+...+(1/(2n-3)-1/(2n-1))+(1/(2n-1)-1/(2n+1))

=1+(1/3-1/3)+(1/5-1/5)+...+(1/(2n-1)-1/(2n-1))-1/(2n+1)

=1-1/(2n+1)

=2n/(2n+1)

即数列{an/2n+1}的前n项和为2n/(2n+1)。

扩展资料:

1、数列的分类

数列可分为有穷数列和无穷数列、周期数列、常数数列等类型。

2、数列的公式

(1)通项公式

数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式。

例:an=3n+2

(2)递推公式

如果数列an的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

例:an=a(n-1)+a(n-2)

参考资料来源:百度百科-数列

xuzhouliuying
高粉答主

2018-02-05 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
(1)
n=1时,a1=2·1=2
n≥2时,
a1+3a2+...+(2n-3)a(n-1)+(2n-1)an=2n ①
a1+3a2+...+(2n-3)a(n-1)=2(n-1) ②
①-②,得(2n-1)an=2
an=2/(2n-1)
n=1时,a1=2/(2·1-1)=2,a1=2同样满足表达式
数列{an}的通项公式为an=2/(2n-1)
(2)
an/(2n+1)=[2/(2n-1)]/(2n+1)=2/[(2n-1)(2n+1)]=1/(2n-1) -1/(2n+1)
Tn=1/1 -1/3 +1/3 -1/5+...+1/(2n-1) -1/(2n+1)
=1- 1/(2n+1)
=2n/(2n+1)
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式