f(x)=ln2(2^x-2^-x)
=ln2+ln(2^x-2^-x)
f'(x)=0+1/(2^x-2^-x)·(2^x`ln2-(-2^-x)·ln2)
=ln2·(2^x+2^-x)/(2^x-2^-x)
扩展资料:
函数f(x)是乘积形式、商的形式、根式、幂的形式、指数形式或幂指函数形式的情况,求导时比较适用对数求导法,这是因为:取对数可将乘法运算或除法运算降格为加法或减法运算,取对数的运算可将根式、幂函数、指数函数及幂指函数运算降格成为乘除运算。
不是所有的函数都可以求导;可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。