3个回答
展开全部
∫(上限为正无穷,下限为2)1/x*(lnx)^kdx
=∫1/(lnx)^k d lnx (x上限为正无穷,下限为2)
=1/(1-k)∫d(lnx)^(1-k) (x上限为正无穷,下限为2)
=[1/(1-k)]*[(ln正无穷大)^(1-k)-1]
若广义积分收敛,所以1-k小于0
所以k大于1
若广义积分发散,k小于等于1
当k=1时取最小值
选b
=∫1/(lnx)^k d lnx (x上限为正无穷,下限为2)
=1/(1-k)∫d(lnx)^(1-k) (x上限为正无穷,下限为2)
=[1/(1-k)]*[(ln正无穷大)^(1-k)-1]
若广义积分收敛,所以1-k小于0
所以k大于1
若广义积分发散,k小于等于1
当k=1时取最小值
选b
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询