4个回答
展开全部
(6)
∫xdx/(3+2x-x^2)
= -(1/2) ∫ (2-2x)/(3+2x-x^2) dx + ∫dx/(3+2x-x^2)
= -(1/2)ln|3+2x-x^2| + ∫dx/(3+2x-x^2)
= -(1/2)ln|3+2x-x^2| - ∫dx/(x^2-2x-3)
= -(1/2)ln|3+2x-x^2| - ∫dx/[(x-3)(x+1)]
= -(1/2)ln|3+2x-x^2| -(1/4) ∫[1/(x-3)-1/(x+1)] dx
= -(1/2)ln|3+2x-x^2| -(1/4)ln|(x-3)/(x+1)| + C
(5)
∫(x-2)dx/((3+2x-x^2)
=-(1/2)∫(2-2x)/(3+2x-x^2) dx-∫dx/(3+2x-x^2)
=-(1/2)ln|3+2x-x^2| + ∫dx/(x^2-2x-3)
=-(1/2)ln|3+2x-x^2| + ∫dx/[(x-3)(x+1)]
=-(1/2)ln|3+2x-x^2| + (1/4) ∫[1/(x-3)-1/(x+1)] dx
=-(1/2)ln|3+2x-x^2| + (1/4) ln|(x-3)/(x+1)| +C
∫xdx/(3+2x-x^2)
= -(1/2) ∫ (2-2x)/(3+2x-x^2) dx + ∫dx/(3+2x-x^2)
= -(1/2)ln|3+2x-x^2| + ∫dx/(3+2x-x^2)
= -(1/2)ln|3+2x-x^2| - ∫dx/(x^2-2x-3)
= -(1/2)ln|3+2x-x^2| - ∫dx/[(x-3)(x+1)]
= -(1/2)ln|3+2x-x^2| -(1/4) ∫[1/(x-3)-1/(x+1)] dx
= -(1/2)ln|3+2x-x^2| -(1/4)ln|(x-3)/(x+1)| + C
(5)
∫(x-2)dx/((3+2x-x^2)
=-(1/2)∫(2-2x)/(3+2x-x^2) dx-∫dx/(3+2x-x^2)
=-(1/2)ln|3+2x-x^2| + ∫dx/(x^2-2x-3)
=-(1/2)ln|3+2x-x^2| + ∫dx/[(x-3)(x+1)]
=-(1/2)ln|3+2x-x^2| + (1/4) ∫[1/(x-3)-1/(x+1)] dx
=-(1/2)ln|3+2x-x^2| + (1/4) ln|(x-3)/(x+1)| +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询