问一道高数题,烦请大神解答?
2个回答
展开全部
∫(2->+∞) dx/[x(lnx)^k]
=∫(2->+∞) dlnx/(lnx)^k
=-[1/(k-1)] [ 1/(lnx)^(k-1) ] |(2->+∞)
收敛
k-1>0
k>1
k>1
∫(2->+∞) dx/[x(lnx)^k]
=-[1/(k-1)] [ 1/(lnx)^(k-1) ] |(2->+∞)
=[1/(k-1)](ln2)^(k-1)
let
k>1
f(k) = [1/(k-1)](ln2)^(k-1)
f'(k)= [-1/(k-1)^2](ln2)^(k-1) +(ln2)^(k-2) . ln(ln2)
f'(k) =0
[-1/(k-1)^2](ln2)^(k-1) +(ln2)^(k-2) . ln(ln2) =0
-ln2 +(k-1)^2 .ln(ln2) =0
(k-1)^2 = ln2/ln(ln2)
k= 1+ √[ln2/ln(ln2)]
min f(x)
=f(1+ √[ln2/ln(ln2)] )
=[1/√[ln2/ln(ln2)] ]. (ln2)^(√[ln2/ln(ln2)])
=∫(2->+∞) dlnx/(lnx)^k
=-[1/(k-1)] [ 1/(lnx)^(k-1) ] |(2->+∞)
收敛
k-1>0
k>1
k>1
∫(2->+∞) dx/[x(lnx)^k]
=-[1/(k-1)] [ 1/(lnx)^(k-1) ] |(2->+∞)
=[1/(k-1)](ln2)^(k-1)
let
k>1
f(k) = [1/(k-1)](ln2)^(k-1)
f'(k)= [-1/(k-1)^2](ln2)^(k-1) +(ln2)^(k-2) . ln(ln2)
f'(k) =0
[-1/(k-1)^2](ln2)^(k-1) +(ln2)^(k-2) . ln(ln2) =0
-ln2 +(k-1)^2 .ln(ln2) =0
(k-1)^2 = ln2/ln(ln2)
k= 1+ √[ln2/ln(ln2)]
min f(x)
=f(1+ √[ln2/ln(ln2)] )
=[1/√[ln2/ln(ln2)] ]. (ln2)^(√[ln2/ln(ln2)])
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询