圆锥曲线方程导数如何得出?
2个回答
展开全部
设在椭圆上有一点P(x1,y1)经过此点椭圆的切线方程为:x1*x/a^2+y1*y/b^2=1
方法一:设切线的方程为Y-Yo=k(X-Xo)即Y=k(X-Xo)+Yo
①
把①式代入椭圆方程X^2/a^2+Y^2/b^2=1,得:
X^2/a^2+[k(X-Xo)+Yo]^2/b^2=1即:
b^2·X^2+a^2·[k^2·(X-Xo)^2+Yo^2+2Yo·k(X-Xo)]=a^2·b^2即:
(b^2+a^2·k^2)X^2-(2a^2·k^2·Xo-2a^2·k)X+(a^2·k^2·Xo^2+a^2·Yo^2-2a^2·k·Xo-a^2·b^2)=0
由于切线Y-Yo=k(X-Xo)与椭圆X^2/a^2+Y^2/b^2=1相切,所以上式方程有且只有一个实数解。
则△=(2a^2·k^2·Xo-2a^2·k)^2-4(b^2+a^2·k^2)(a^2·k^2·Xo^2+a^2·Yo^2-2a^2·k·Xo-a^2·b^2)=0
则有k=-(b^2·Xo)/(a^2·Yo)
把k=-(b^2·Xo)/(a^2·Yo)代入切线方程Y-Yo=k(X-Xo),得:
(a^2·Yo)(Y-Yo)=-(b^2·Xo)(X-Xo)即:
a^2·Yo·Y+b^2·Xo·X=a^2·Yo^2+b^2·Xo^2
②
又把点(Xo,Yo)代入椭圆方程X^2/a^2+Y^2/b^2=1,得:
Xo^2/a^2+Yo^2/b^2=1
即
b^2·Xo^2+a^2·Yo^2=a^2·b^2
③
把③式代入②式,得:
a^2·Yo·Y+b^2·Xo·X=a^2·b^2
等式两边同时除以a^2·b^2,得:
Xo·X/a^2
+
Yo·Y/b^2=1
方法二:用隐函数求导
有
椭圆方程两边分别对x求导:
b²x²+a²y²-a²b²=0
2b²x+2a²y*(dy/dx)=0
(dy/dx)=-b²x1/(a²y1)
即k=-b²x1/(a²y1)
则切线方程是:y-y1=k*(x-x1)=[-b²x1/(a²y1)](x-x1)
(y-y1)(a²y1)+b²x1(x-x1)=0
a²yy1+b²x1x-(a²y1²+b²x1²)=a²yy1+b²x1x-a²b²=0
即:xx1/a²+yy1/b²=1
双曲线过点(x0,y0)的切线为
x0*x/(a^2)-y0*y/(b^2)=1
证明:x²/a²-y²/b²=1.对x求导:2x/a²-2yy′/b²=0.
(x0,y0)的切线斜率y′=x0b²/y0a²
(x0,y0)的切线方程:(y-y0)=x0b²/y0a²(x-x0).
注意到b²x0²-a²y0²=a²b².
切线方程k可化简为:x0x/a²-y0y/b²=1.
求抛物线:y^2=2px
在点(a,b)处切线的方程
解:抛物线方程两边对x求导:得:
2yy'=2p
即
y'=p/y
故抛物线在(a,b)处切线的斜率为p/b
所以在(a,b)处切线方程为:
y-b=(p/b)(x-a)
又:
b^2=2pa
所以
y+b=p(x+a)
即抛物线y^2=2px在(a,b)处切线方程为:
y+b=p(x+a)
方法一:设切线的方程为Y-Yo=k(X-Xo)即Y=k(X-Xo)+Yo
①
把①式代入椭圆方程X^2/a^2+Y^2/b^2=1,得:
X^2/a^2+[k(X-Xo)+Yo]^2/b^2=1即:
b^2·X^2+a^2·[k^2·(X-Xo)^2+Yo^2+2Yo·k(X-Xo)]=a^2·b^2即:
(b^2+a^2·k^2)X^2-(2a^2·k^2·Xo-2a^2·k)X+(a^2·k^2·Xo^2+a^2·Yo^2-2a^2·k·Xo-a^2·b^2)=0
由于切线Y-Yo=k(X-Xo)与椭圆X^2/a^2+Y^2/b^2=1相切,所以上式方程有且只有一个实数解。
则△=(2a^2·k^2·Xo-2a^2·k)^2-4(b^2+a^2·k^2)(a^2·k^2·Xo^2+a^2·Yo^2-2a^2·k·Xo-a^2·b^2)=0
则有k=-(b^2·Xo)/(a^2·Yo)
把k=-(b^2·Xo)/(a^2·Yo)代入切线方程Y-Yo=k(X-Xo),得:
(a^2·Yo)(Y-Yo)=-(b^2·Xo)(X-Xo)即:
a^2·Yo·Y+b^2·Xo·X=a^2·Yo^2+b^2·Xo^2
②
又把点(Xo,Yo)代入椭圆方程X^2/a^2+Y^2/b^2=1,得:
Xo^2/a^2+Yo^2/b^2=1
即
b^2·Xo^2+a^2·Yo^2=a^2·b^2
③
把③式代入②式,得:
a^2·Yo·Y+b^2·Xo·X=a^2·b^2
等式两边同时除以a^2·b^2,得:
Xo·X/a^2
+
Yo·Y/b^2=1
方法二:用隐函数求导
有
椭圆方程两边分别对x求导:
b²x²+a²y²-a²b²=0
2b²x+2a²y*(dy/dx)=0
(dy/dx)=-b²x1/(a²y1)
即k=-b²x1/(a²y1)
则切线方程是:y-y1=k*(x-x1)=[-b²x1/(a²y1)](x-x1)
(y-y1)(a²y1)+b²x1(x-x1)=0
a²yy1+b²x1x-(a²y1²+b²x1²)=a²yy1+b²x1x-a²b²=0
即:xx1/a²+yy1/b²=1
双曲线过点(x0,y0)的切线为
x0*x/(a^2)-y0*y/(b^2)=1
证明:x²/a²-y²/b²=1.对x求导:2x/a²-2yy′/b²=0.
(x0,y0)的切线斜率y′=x0b²/y0a²
(x0,y0)的切线方程:(y-y0)=x0b²/y0a²(x-x0).
注意到b²x0²-a²y0²=a²b².
切线方程k可化简为:x0x/a²-y0y/b²=1.
求抛物线:y^2=2px
在点(a,b)处切线的方程
解:抛物线方程两边对x求导:得:
2yy'=2p
即
y'=p/y
故抛物线在(a,b)处切线的斜率为p/b
所以在(a,b)处切线方程为:
y-b=(p/b)(x-a)
又:
b^2=2pa
所以
y+b=p(x+a)
即抛物线y^2=2px在(a,b)处切线方程为:
y+b=p(x+a)
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
当y-b≥0时
(y-b)²=r²-(x-a)²
y=b+√[r²-(x-a)²]
y'=1/(2√[r²-(x-a)²])*[r²-(x-a)²]'
y'=-1/(2√[r²-(x-a)²])*(x-a)²'
y'=-1/(2√[r²-(x-a)²])*[2(x-a)](x-a)'
y'=-1/√[r²-(x-a)²]*(x-a)
所以过p(x0,y0)的直线的斜率为-1/√[r²-(x0-a)²]*(x0-a)
所以该直线方程为y-y0=-1/√[r²-(x0-a)²]*(x0-a)(x-x0)
y-y0=-1/√[r²-(x0-a)²]*(x0-a)(x-x0)
y-y0=-1/√(y0-b)²*(x0-a)(x-x0)
y-y0=-1/(y0-b)*(x0-a)(x-x0)
y-y0+1/(y0-b)*(x0-a)(x-x0)=0
(y-y0)(y0-b)+(x0-a)(x-x0)=0
yy0-by-y0²+by0+xx0-ax-x0²+ax0=0
yy0-by-by0+b²+xx0-ax-ax0+a²=y0²-2by0+b²+x0²-2ax0+a²
(x0-a)(x-a)+(y0-b)(y-b)=r^2
同理可求得y0-b<0时,切线方程为(x0-a)(x-a)+(y0-a)(y-a)=r^2
楼主的结论写错了吧,:p
(y-b)²=r²-(x-a)²
y=b+√[r²-(x-a)²]
y'=1/(2√[r²-(x-a)²])*[r²-(x-a)²]'
y'=-1/(2√[r²-(x-a)²])*(x-a)²'
y'=-1/(2√[r²-(x-a)²])*[2(x-a)](x-a)'
y'=-1/√[r²-(x-a)²]*(x-a)
所以过p(x0,y0)的直线的斜率为-1/√[r²-(x0-a)²]*(x0-a)
所以该直线方程为y-y0=-1/√[r²-(x0-a)²]*(x0-a)(x-x0)
y-y0=-1/√[r²-(x0-a)²]*(x0-a)(x-x0)
y-y0=-1/√(y0-b)²*(x0-a)(x-x0)
y-y0=-1/(y0-b)*(x0-a)(x-x0)
y-y0+1/(y0-b)*(x0-a)(x-x0)=0
(y-y0)(y0-b)+(x0-a)(x-x0)=0
yy0-by-y0²+by0+xx0-ax-x0²+ax0=0
yy0-by-by0+b²+xx0-ax-ax0+a²=y0²-2by0+b²+x0²-2ax0+a²
(x0-a)(x-a)+(y0-b)(y-b)=r^2
同理可求得y0-b<0时,切线方程为(x0-a)(x-a)+(y0-a)(y-a)=r^2
楼主的结论写错了吧,:p
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询