已知a>b>c且a+b+c=0,求证:根号(b^2-ac)<(根号3)*a
1个回答
展开全部
a
>
b
>
c,因此(a-b)(a-c)
>
0
b
=
-(a
+
c)代入得
(2a
+
c)(a
-
c)
>
0
即
2a^2
-
ac
-
c^2
>
0
从而
a^2
+
ac
+
c^2
<
3a^2
(1)
a^2
+
ac
+
c^2
=
(a+c/2)^2
+
(3c^2)/4
≥滑首芦
0
(1)式两边开方得
√(a^2
+
ac
+
c^2)
<
|a|√芹型3
=
a√3
(显然a
>
0,否信带则a+b+c
<
0)
即√[(a+c)^2
-
ac]
<
a√3
因此√(b^2
-
ac)
<
a√3
得证
>
b
>
c,因此(a-b)(a-c)
>
0
b
=
-(a
+
c)代入得
(2a
+
c)(a
-
c)
>
0
即
2a^2
-
ac
-
c^2
>
0
从而
a^2
+
ac
+
c^2
<
3a^2
(1)
a^2
+
ac
+
c^2
=
(a+c/2)^2
+
(3c^2)/4
≥滑首芦
0
(1)式两边开方得
√(a^2
+
ac
+
c^2)
<
|a|√芹型3
=
a√3
(显然a
>
0,否信带则a+b+c
<
0)
即√[(a+c)^2
-
ac]
<
a√3
因此√(b^2
-
ac)
<
a√3
得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询