已知数列{an}的前n项和为Sn,且满足an+2SnS(n-1)=0

 我来答
本泽皖桖0FS
2020-03-07 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:35%
帮助的人:827万
展开全部
解:(1)因为an=Sn-S(n-1);故an+2SnS(n-1)=Sn-S(n-1)+2SnS(n-1)=0;移项,除SnS(n-1)得:1/Sn-1/S(n-1)=-2,又S1=a1=1/2;1/Sn=4-2n(n=!2),1/S2=4.所以通项an=Sn-S(n-1)=-1/[2(n-2)(n-3)](n>3),a1=1/2,a2=-1/4,a3=4;显然{1/Sn},{an}都不是等差数列。(2)由(1)可知an=-1/[2(n-2)(n-3)](n>3),a1=1/2,a2=-1/4,a3=4。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
乌辰钊清山
2019-11-30 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:34%
帮助的人:653万
展开全部
由于an+2SnS(n-1)=0,
即sn-s(n-1)+2sns(n-1)=0,
即1/s(n-1)
-1/sn
+2=0,
那么1/sn
-1/(sn-1)=2,1/s1=1/a1=2,
所以{1/sn}是以2为首项,2为公差的等差数列;
所以1/sn=2n,sn=1/2n,s(n-1)=1/2(n-1),
所以an=sn-s(n-1)=1/2n
-1/2(n-1)=-1/2n(n-1)
(n≥2),a1=1/2;
所以a2-a1=3/4,an-a(n-1)=1/2n
-1/2(n-2)=-1/n(n-2)(n>2);不是常数,故{an}不是等差数列。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式