高等数学学什么
1个回答
展开全部
如果是自学,要求不太高,不要学什么数学分析,工科数学分析,比较难;数学分析一般是数学系的人学。
高等数学和线性代数一般学校是分开上。
高等数学的内容如下:
1.一元函数的极限和连续。理论证明比如ε-N,ε-X,ε-δ,不需学得深;夹逼定理和单调有界蛮重要的,一些等价代换要掌握;函数的连续性好好学,不难.
2.一元函数微分学.求导一定一定要学好,否则你学定积分就要痛苦了;微分的实质是求导;微分学基本定理,lagrange中值定理一定要好好学,证明题基本靠它;L'Hospital相当重要;泰勒公式证明题中常用.
3.一元函数积分学.变限函数好好学吧;分部积分法和换元积分法也好好学吧;这部分内容会有大量的应用题.
4.常微分方程.具体内容不说了,反正不难,但很烦很烦,把公式背背熟就可以了.
5.多元函数微分学.不止是多元,内容是多多了.复变函数出来了.
6.多元函数积分学.二重、三重积分出来了,涉及第一型曲线及曲面计算。
7.向量函数的积分。涉及第二型曲线和曲面的计算。
8.复变函数的积分。柯西积分定理是基础是重点,lz看着办吧。
9.常数项级数。
10.函数项级数。
lz,线形代数要学,否则高数后面的内容你会学得很费劲;但是,线形代数也是很烦的,因为内容实在太多了,但都不是很深,基本围绕三点:用矩阵解方程组、用矩阵解释二次型、特征值及其变换(正交变换很重要)。
希望能对lz所有帮助。
高等数学和线性代数一般学校是分开上。
高等数学的内容如下:
1.一元函数的极限和连续。理论证明比如ε-N,ε-X,ε-δ,不需学得深;夹逼定理和单调有界蛮重要的,一些等价代换要掌握;函数的连续性好好学,不难.
2.一元函数微分学.求导一定一定要学好,否则你学定积分就要痛苦了;微分的实质是求导;微分学基本定理,lagrange中值定理一定要好好学,证明题基本靠它;L'Hospital相当重要;泰勒公式证明题中常用.
3.一元函数积分学.变限函数好好学吧;分部积分法和换元积分法也好好学吧;这部分内容会有大量的应用题.
4.常微分方程.具体内容不说了,反正不难,但很烦很烦,把公式背背熟就可以了.
5.多元函数微分学.不止是多元,内容是多多了.复变函数出来了.
6.多元函数积分学.二重、三重积分出来了,涉及第一型曲线及曲面计算。
7.向量函数的积分。涉及第二型曲线和曲面的计算。
8.复变函数的积分。柯西积分定理是基础是重点,lz看着办吧。
9.常数项级数。
10.函数项级数。
lz,线形代数要学,否则高数后面的内容你会学得很费劲;但是,线形代数也是很烦的,因为内容实在太多了,但都不是很深,基本围绕三点:用矩阵解方程组、用矩阵解释二次型、特征值及其变换(正交变换很重要)。
希望能对lz所有帮助。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询