一道几何数学题。
48个回答
展开全部
分别作EF⊥CB的延长线,EH⊥AC,EG⊥BD。
在Rt⊿CEF和Rt⊿CEH中,CE公用,∠ECF=∠ECH(已知),则Rt⊿CEF≌⊿CEH(AAS),所以EF=EH(全等三角形对应边相等)。
因为∠ABC=100
。
,∠DBC=20
。
,所以∠ABD=80
。
,又∠EBF=80
。
,与上同理可证:EF=EG,得出EH=EG,而ED公用,所以Rt⊿EDH≌Rt⊿EDG(HL),所以∠EDH=∠EDG(全等三角形对应角相等)。
∠CED=∠EDH-∠ECD=(∠BDH-∠BCA)=×20
。
=10
。
,所以∠CED=10°
在Rt⊿CEF和Rt⊿CEH中,CE公用,∠ECF=∠ECH(已知),则Rt⊿CEF≌⊿CEH(AAS),所以EF=EH(全等三角形对应边相等)。
因为∠ABC=100
。
,∠DBC=20
。
,所以∠ABD=80
。
,又∠EBF=80
。
,与上同理可证:EF=EG,得出EH=EG,而ED公用,所以Rt⊿EDH≌Rt⊿EDG(HL),所以∠EDH=∠EDG(全等三角形对应角相等)。
∠CED=∠EDH-∠ECD=(∠BDH-∠BCA)=×20
。
=10
。
,所以∠CED=10°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为关系式|2a-b-1|+(a-2)的平方=0,,,又(a-2)的平方大于等于0,,|2a-b-1|也大于等于0,,,所以(a-2)=|2a-b-1|=0
既A=2,B=3
又根据三角形的定理两边之和大于第三边,,两边之差小于第三边,,,所以C=2或3或4。。。又C为偶,,所以C=2或4
既A=2,B=3
又根据三角形的定理两边之和大于第三边,,两边之差小于第三边,,,所以C=2或3或4。。。又C为偶,,所以C=2或4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
给你二个完全一样的题目,参考一下.(只是字母不同)
例1:
正方形ABCD,内取一点O,使角OAD=ODA=15度,求证:三角形BCO是正三角形。
在正方形ABCD外找一点 E,使△AED为正三角形,连接OE
∵AE=AD=AB,∠BAO=∠EAO=75度,AO=AO
∴△BAO≌△EAO
又因为AO=DO(等边对等角),EO=EO,AE=AD
∴△AEO≌△DEO
∴∠AEO=∠DEO,又∠AEO+∠DEO=60度
又∵△BAO≌△EAO(已证)
∴∠ABO=∠AEO=30度
∴∠OBC=90-30=60度
同理可证,∠OCB=60度
∴在△BOC中,∠OCB=60度,∠OBC=60度
∴△BOC为正三角形。
例2:
已知O是正方形内一点,角OBC等于角OCB等于15度,证三角形OAD是等边三角形。
证明:
以BC为边向正方形外作正三角形BCM,连接OM
因为∠OBC=15°,∠CBA=90°,∠CBM=60°
所以∠ABO=∠MBO=75°
同理∠OCM=75
因为BA=BC,BC=BM
所以AO=OM
又因为BO=BO
所以△BAO≌△BMO(SBS)
所以AO=OM
因为BM=CM,∠OBM=∠OCM,OM=OM
所以△BMO≌△CMO
所以∠BMO=∠CMO=30°
所以∠MOB=75°
所以∠MBO=∠MOB=75°
所以OM=BM
所以AO=BA
同理DO=CD
因为BA=DA=CD
所以AO=DO=DA
(这是一则经典的几何问题,证明方法也有多种,上面的证明方法是其中的一种方法)
例1:
正方形ABCD,内取一点O,使角OAD=ODA=15度,求证:三角形BCO是正三角形。
在正方形ABCD外找一点 E,使△AED为正三角形,连接OE
∵AE=AD=AB,∠BAO=∠EAO=75度,AO=AO
∴△BAO≌△EAO
又因为AO=DO(等边对等角),EO=EO,AE=AD
∴△AEO≌△DEO
∴∠AEO=∠DEO,又∠AEO+∠DEO=60度
又∵△BAO≌△EAO(已证)
∴∠ABO=∠AEO=30度
∴∠OBC=90-30=60度
同理可证,∠OCB=60度
∴在△BOC中,∠OCB=60度,∠OBC=60度
∴△BOC为正三角形。
例2:
已知O是正方形内一点,角OBC等于角OCB等于15度,证三角形OAD是等边三角形。
证明:
以BC为边向正方形外作正三角形BCM,连接OM
因为∠OBC=15°,∠CBA=90°,∠CBM=60°
所以∠ABO=∠MBO=75°
同理∠OCM=75
因为BA=BC,BC=BM
所以AO=OM
又因为BO=BO
所以△BAO≌△BMO(SBS)
所以AO=OM
因为BM=CM,∠OBM=∠OCM,OM=OM
所以△BMO≌△CMO
所以∠BMO=∠CMO=30°
所以∠MOB=75°
所以∠MBO=∠MOB=75°
所以OM=BM
所以AO=BA
同理DO=CD
因为BA=DA=CD
所以AO=DO=DA
(这是一则经典的几何问题,证明方法也有多种,上面的证明方法是其中的一种方法)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有已知条件可知AD=BE=CF,∠A=∠B=∠C,AF=BD=EC(边角边定理)
所以△ADF≌△BED≌△CFE
所以DF=DE=EF
所以△DEF为等边三角形。
所以△ADF≌△BED≌△CFE
所以DF=DE=EF
所以△DEF为等边三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询