寻高手帮忙解两道三角函数数学题!
1个回答
展开全部
1
1)
做AD垂直BC于D
三角形ABC的面积=1/2
*AD*BC=1/2
*AB
*BC
&sinθ
已知三角形ABC的面积S满足
√3≤S≤3,且向量AB乘以向量BC等于6
(√3)/3≤sinθ≤1
θ∈[∏/3,2∏/3]
2)
f(θ)=(sinθ)^2+2sinθcosθ+3(cosθ)^2=(sinθ+cosθ)^2+2(cosθ)^2≥|2(sinθ+cosθ)(√2cosθ)|
以上仅当sinθ+cosθ=√2cosθ时,等式成立
当sinθ/cosθ=√2-1时。
f(θ)≥|2(sinθ+cosθ)(√2cosθ)|=(2√2)(tanθ+1)(cosθ)^2=4(cosθ)^2=4/(1+(tanθ)^2)=4/(4-2√2)=2+√2
即当tanθ=√2-1时,f(θ)取最小值2+√2
2.|m|=√(sinθ^2+cosθ^2)=1
|n|=√(2-2√2sinθ+sinθ^2+cosθ^2)=√(3-2√2sinθ)
|m+n|=(8√2)/5
(1+√(3-2√2sinθ))
=(8√2)/5
整理
sinθ=8/5-(9√2/50)
cosθ=√(1-sinθ^2)
再求出
cos(θ+π/4)=cosθcosπ/4
-
sinθsinπ/4
再求出
cos(θ/2+π/8)=-√((1+cos(θ+π/4))/2
)
后面的解法应该是这样,可能是我向量部分求错了,你自己试下。
1)
做AD垂直BC于D
三角形ABC的面积=1/2
*AD*BC=1/2
*AB
*BC
&sinθ
已知三角形ABC的面积S满足
√3≤S≤3,且向量AB乘以向量BC等于6
(√3)/3≤sinθ≤1
θ∈[∏/3,2∏/3]
2)
f(θ)=(sinθ)^2+2sinθcosθ+3(cosθ)^2=(sinθ+cosθ)^2+2(cosθ)^2≥|2(sinθ+cosθ)(√2cosθ)|
以上仅当sinθ+cosθ=√2cosθ时,等式成立
当sinθ/cosθ=√2-1时。
f(θ)≥|2(sinθ+cosθ)(√2cosθ)|=(2√2)(tanθ+1)(cosθ)^2=4(cosθ)^2=4/(1+(tanθ)^2)=4/(4-2√2)=2+√2
即当tanθ=√2-1时,f(θ)取最小值2+√2
2.|m|=√(sinθ^2+cosθ^2)=1
|n|=√(2-2√2sinθ+sinθ^2+cosθ^2)=√(3-2√2sinθ)
|m+n|=(8√2)/5
(1+√(3-2√2sinθ))
=(8√2)/5
整理
sinθ=8/5-(9√2/50)
cosθ=√(1-sinθ^2)
再求出
cos(θ+π/4)=cosθcosπ/4
-
sinθsinπ/4
再求出
cos(θ/2+π/8)=-√((1+cos(θ+π/4))/2
)
后面的解法应该是这样,可能是我向量部分求错了,你自己试下。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |