如果函数f(x)在点x0可导,且取得极值,则f'(x0)=

 我来答
皋天蓝劳娴
2019-11-04 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:34%
帮助的人:708万
展开全部
如果要证明的话,需要分两个方面:
首先,如果f(x)在x0处取极值,那么一定有f'(x0)=0,这是由极值的定义给出的。也就是存在一个小邻域,使周围的值都比这个极值大或小。
但是,如果只是f'(x0)=0,不能得到极值的条件。这个只需要举一个反例就可以了,如y=x^3,在x=0处,导数=0,但并不是极值点。事实上,这类点只是导数=0,函数仍然是单调的。
欢迎追问~
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式