求极限什么时候可以直接带入

求极限时何时才能把极限直接带入?有例题求(x→0)lim(cosx+sinx)^x^(-2)为什么不能把cosx直接代成1,然后用(1+x)^x^(-1)=e,再利用si... 求极限时何时才能把极限直接带入?有例题
求(x→0)lim(cosx+sinx)^x^(-2)为什么不能把cosx直接代成1,然后用(1+x)^x^(-1)=e,再利用sinx/x=1,得出答案是e,但是正解是利用取对数和洛必达法则解得答案是√e上面的错节应该是不能直接代cosx=1吧?究竟什么时候才能直接代入极限呢?
展开
 我来答
Dilraba学长
高粉答主

2018-12-23 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411022

向TA提问 私信TA
展开全部

求极限的时候,只有在积分项相乘并且其极限值为常数的时候才可以代入并提出去。你的第二个表达式,因为它是和式,所以只是分别在求极限而已,不能 直接带成1。详细如图所示:

扩展资料

极限性质

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。

但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”

3、保号性:若  (或<0),则对任何  (a<0时则是  ),存在N>0,使n>N时有  (相应的xn<m)。

4、保不等式性:设数列{xn} 与{yn}均收敛。若存在正数N ,使得当n>N时有  ,则  (若条件换为xn>yn ,结论不变)。

5、和实数运算的相容性:譬如:如果两个数列{xn} ,{yn} 都收敛,那么数列  也收敛,而且它的极限等于{xn} 的极限和{yn} 的极限的和。

检甘谢米雪
2019-12-09 · TA获得超过3732个赞
知道小有建树答主
回答量:3090
采纳率:29%
帮助的人:192万
展开全部
确实不能直接代入.
这个问题当初也困扰我很久.后来发现你要利用那几个极限运算的关系.就是当函数形式如f(x)g(x)或g(x)/f(x)时,有一个是确切的数字就可以代.而f(x)+g(x)时必须两个都是确切数字才能代.这题形式是[f(x)+g(x)]^u(x)根本就不可以用以上任一个可计算法则.并且当你上面可用法则代入遇到不定式(就是0*无穷,无穷乘无穷这类的不能代了.)说的不够全面,多做些题自然就能知道什么时候能代不能代了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式