证明:a²+b²+c²≥ab+bc+ac
2个回答
展开全部
首先,补充一下,这个不等式一定要是a>1,b>1,c>1才可以成立的。
将原方程化为:
a²+b²+c²-ab-bc-ac≥0
2a²+2b²+2c²-2ab-2bc-2ac≥0
(a-b)²+(b-c)²+(a-c)²≥0
又∵(a-b)²≥0,(b-c)²≥0,(a-c)²≥0,
∴原不等式成立。
将原方程化为:
a²+b²+c²-ab-bc-ac≥0
2a²+2b²+2c²-2ab-2bc-2ac≥0
(a-b)²+(b-c)²+(a-c)²≥0
又∵(a-b)²≥0,(b-c)²≥0,(a-c)²≥0,
∴原不等式成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询