
所有的矩形都是平行四边形的否命题及命题的否定?
1个回答
展开全部
你说的错误:
一般地,“都”表示全部,“不都”表示不是全部,它包含一部分或没有,而“都不”表示全不,即一个也没有。如命题“a、b都是零”的否定不是“a、b都不是零”,而是“a、b不都是零”,即“a、b中至少有一个不为零”。因为“a、b都是零”是复合命题“p且q”的形式,其否定应该为“非p或非q”,即“a、b中至少有一个不为零”。
对“全”、“都”的否定,只需在其前面加一个“不”即可,而对“一定”的否定却不一样。因两者的词性不同,“全”、“都”是副词,是对某一个范围而言的;而“一定”是一个语气助词,带强调意味,这两者有一定区别。因此,在对“一定”、“一定都”的否定时,可分两步,先将“一定”两字拿下,否定后放在“不”的前面。如对命题“三角形两边之和一定大于第三边”的否定,先是“三角形两边之和不大于第三边”,后得“三角形两边之和一定不大于第三边”。
总结:“都是”的否定是“不都是”,“不都是”包含“都不是”,“至少有一个”的否定是“一个都没有”,“所有的”的否定是“某些”,“任意的”的否定是“某个”,“至多有一个”的否定是“至少有两个”,“至多有n个”的否定是“至少有n+1个”,“任意两个”的否定是“某两个”。
一般地,“都”表示全部,“不都”表示不是全部,它包含一部分或没有,而“都不”表示全不,即一个也没有。如命题“a、b都是零”的否定不是“a、b都不是零”,而是“a、b不都是零”,即“a、b中至少有一个不为零”。因为“a、b都是零”是复合命题“p且q”的形式,其否定应该为“非p或非q”,即“a、b中至少有一个不为零”。
对“全”、“都”的否定,只需在其前面加一个“不”即可,而对“一定”的否定却不一样。因两者的词性不同,“全”、“都”是副词,是对某一个范围而言的;而“一定”是一个语气助词,带强调意味,这两者有一定区别。因此,在对“一定”、“一定都”的否定时,可分两步,先将“一定”两字拿下,否定后放在“不”的前面。如对命题“三角形两边之和一定大于第三边”的否定,先是“三角形两边之和不大于第三边”,后得“三角形两边之和一定不大于第三边”。
总结:“都是”的否定是“不都是”,“不都是”包含“都不是”,“至少有一个”的否定是“一个都没有”,“所有的”的否定是“某些”,“任意的”的否定是“某个”,“至多有一个”的否定是“至少有两个”,“至多有n个”的否定是“至少有n+1个”,“任意两个”的否定是“某两个”。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |