如何理解矩阵的“秩”?
一般来说,如果将矩阵视为行向量或列向量,则秩是这些行向量或列向量的秩,即,包含在最大独立组中的向量数。在线性代数中,矩阵A的列秩是A的线性独立垂直列的最大数量。同样,行秩是A的线性独立水平行数的最大数量。
矩阵秩是反映矩阵固有特性的一个重要概念。让A成为一组向量,并将A的最大不相关组中的向量数定义为A的等级。定义 1.在m * n矩阵A中,行k与列k相交处的元素被任意确定以形成A的k阶子矩阵。这个子矩阵的行列式,一个叫做A的k阶子表达式,例如,在一个阶梯式矩阵中,选择 1,3 行和 3,4 列,由元素在其交点处组成的二阶子矩阵的行列式是矩阵A的二阶子公式。定义 2.A =(aij)m × n的非零子公式的最大阶称为矩阵A的秩,其记录为rA、rankA或R(A)。
具体而言,零矩阵的秩被指定为零。显然,ra ≤ min (m,n) 很容易得到: 如果A中至少有一个r阶子公式不等于零,并且当r<min (m,n) 时,如果A中的所有r + 1 子表达式均为 0,则A的等级为r。N阶可逆矩阵的秩可直接从定义中获得。
通常,可逆矩阵称为全秩矩阵,det(A) ÷ 0; 非秩矩阵是奇异矩阵,det(A)= 0。根据行列式的性质 1(1.5),矩阵A的换位等级与A的换位等级相同。计算以下矩阵的等级,以及A的所有三阶子表达式,其中一种行为为零; 或两行成比例,因此所有三阶子表达式均为零,所以rA = 2。
2021-01-25 广告
从另外一个角度来看,秩就是矩阵中干货数量的度量,秩越大,干货越大,信息越多。