a^n+b^n , a^n-b^n 怎样分解因式?
2个回答
展开全部
解题过程如下:
(1)n是偶数:
a^n+b^n不能分解
a^n-b^n至少有(a+b)(a-b)的因子
(2)n是奇数:
a^n+b^n至少有(a+b)的因子
a^n-b^n至少有(a-b)的因子
令a/b=x
a^n+b^n=b^n*[x^n+1]
a^n-b^n=b^n*[x^n-1]
当n为偶数时,x^n+1=0无解,x^n-1=0至少有1,-1两个根
当n为奇数时,x^n+1=0至少有-1一个根,x^n-1=0至少有1两个根
扩展资料
因式分解基本步骤:
(1)找出公因式。
(2)提公因式并确定另一个因式。
①找公因式可按照确定公因式的方法先确定系数再确定字母。
②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因 式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式。
③提完公因式后,另一因式的项数与原多项式的项数相同。
展开全部
前提:实数范围内分解
n需要分为偶数和奇数来分别分析:
(1)n是偶数:
a^n+b^n不能分解
a^n-b^n至少有(a+b)(a-b)的因子
(2)n是奇数
a^n+b^n至少有(a+b)的因子
a^n-b^n至少有(a-b)的因子
分析:
令a/b=x
a^n+b^n=b^n*[x^n+1]
a^n-b^n=b^n*[x^n-1]
当n为偶数时,x^n+1=0无解,x^n-1=0至少有1,-1两个根
当n为奇数时,x^n+1=0至少有-1一个根,x^n-1=0至少有1两个根
n需要分为偶数和奇数来分别分析:
(1)n是偶数:
a^n+b^n不能分解
a^n-b^n至少有(a+b)(a-b)的因子
(2)n是奇数
a^n+b^n至少有(a+b)的因子
a^n-b^n至少有(a-b)的因子
分析:
令a/b=x
a^n+b^n=b^n*[x^n+1]
a^n-b^n=b^n*[x^n-1]
当n为偶数时,x^n+1=0无解,x^n-1=0至少有1,-1两个根
当n为奇数时,x^n+1=0至少有-1一个根,x^n-1=0至少有1两个根
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询