等式的性质的概念

 我来答
羊肉果子
2020-11-01 · TA获得超过4820个赞
知道大有可为答主
回答量:5569
采纳率:96%
帮助的人:254万
展开全部
含有等号的式子叫做等式,等式可分为矛盾等式和条件等式。等式两边同时加上(或减去)同一个整式,或者等式两边同时乘或除以同一个不为0的整式,等式的值不变。例:1+2=3

等式的性质:等式两边同时加上、减去、乘以、除以(除数不为0)同一个整式,等式仍然成立。等式具有传递性。用式子表达为:若a=b,那么a+c=b+c。若a=b,那么a·c=b·c。若a=b,那么a²=b²。

性质1

等式两边同时加上(或减去)同一个整式,等式仍然成立。

若a=b

那么a+c=b+c

性质2

等式两边同时乘或除以同一个不为0的整式,等式仍然成立。

若a=b

那么有a·c=b·c

或a÷c=b÷c(c≠0)

性质3

等式具有传递性。

若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an

拓展性质
拓展1:等式两边同时被一个数或式子减,结果仍相等。

如果a=b,那么c-a=c-b。

拓展2:等式两边取相反数,结果仍相等。

如果a=b,那么-a=-b。

拓展3:等式两边不等于0时,被同一个数或式子除,结果仍相等。;

如果a=b≠0,那么c/a=c/b。

拓展4:等式两边不等于0时,两边取倒数,结果仍相等。

如果a=b≠0,那么1/a=1/b。

意义
等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质。如移项,运用了等式的性质1;去分母,运用了等式的性质2。

运用等式的性质,涉及除法时,要注意转换后,除数不能为0,否则无意义。

恒等式
恒等式(identities),数学概念,恒等式是无论其变量如何取值,等式永远成立的算式。恒等式成立的范围是左右函数定义域的公共部分,两个独立的函数却各自有定义域,与x在非负实数集内是恒等的,而在实数集内是不恒等的。

恒等式有多个变量的,也有一个变量的,若恒等式两边就一个变量,恒等式就是两个解析式之间的一种关系。它来源于e^ix=cosx+isinx(复数的三角表示),令x=π就得e^πi + 1 = 0。

“函数相等”与“恒等式”之间有什么关系,由“恒等式”能得出“函数相等”吗?

数学上,恒等式是无论其变量在给定的取值范围内取何值,等式永远成立的算式。恒等式有多个变量的,也有一个变量的,若恒等式两边就一个变量,恒等式就是两个 解析式之间的一种关系。给定两个解析式,如果对于它们的定义域(见函数)的公共部分(或公共部分的子集)的任一数或数组,都有相等的值,就称这两个解析式 是恒等的。

相关性质为:

1.若y=f(x)与y=g(x)有相同的定义域,对于定义域内的任一个x均有f(x)=g(x)则y=f(x)与y=g(x)是相等函数,同时两解析式必相同。

2.若y=f(x)与y=g(x)是相等函数,则两个函数的解析式相同,于是其中的参数都能对应相等。

不等式
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )(其中不等号也可以为<,≤,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式