a、β∈(O,π/2),cosα=√5/5,sin(α十β)=3/5,求Cosβ的值
高粉答主
2021-05-02 · 中小学教师,杨建朝,蒲城县教研室蒲城县教育学会、教育领域创作...
个人认证用户
关注
展开全部
∵α,β∈(0,π/2)
又cosα=√5/5<1/2=cosπ/3
∴π/3<α<π/2
sin(α+β)=3/5<1/2
∴5π/6<α+β<π,或0<α+β<π/6
∴5π/6<α+β<π
sinα=4√5/5,cos(α+β)=-4/5
cosβ=cos(α+β-α)
=cos(α+β)cosα+sin(α+β)sinα
=-4/5×(√5/5)+4√5/5×3/5
=-4√5/25+12√5/25
=8√5/25
又cosα=√5/5<1/2=cosπ/3
∴π/3<α<π/2
sin(α+β)=3/5<1/2
∴5π/6<α+β<π,或0<α+β<π/6
∴5π/6<α+β<π
sinα=4√5/5,cos(α+β)=-4/5
cosβ=cos(α+β-α)
=cos(α+β)cosα+sin(α+β)sinα
=-4/5×(√5/5)+4√5/5×3/5
=-4√5/25+12√5/25
=8√5/25
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
α,β∈(0,π/2)
cosα=√5/5 =>sinα=2√5/5
sin(α+β)=3/5
sinα.cosβ+cosα.sinβ =3/5
(√5/5).cosβ+(2√5/5)sinβ =3/5
√5cosβ+2√5sinβ =3
2√5sinβ =3 -√5cosβ
(2√5sinβ)^2 =(3 -√5cosβ)^2
20(sinβ)^2 = 9-6√5cosβ + 5(cosβ)^2
25(cosβ)^2 -6√5cosβ -11=0
cosβ = (6√5 +16√5)/50 or (6√5 -16√5)/50 (rej)
ie
cosβ = 11√5/25
cosα=√5/5 =>sinα=2√5/5
sin(α+β)=3/5
sinα.cosβ+cosα.sinβ =3/5
(√5/5).cosβ+(2√5/5)sinβ =3/5
√5cosβ+2√5sinβ =3
2√5sinβ =3 -√5cosβ
(2√5sinβ)^2 =(3 -√5cosβ)^2
20(sinβ)^2 = 9-6√5cosβ + 5(cosβ)^2
25(cosβ)^2 -6√5cosβ -11=0
cosβ = (6√5 +16√5)/50 or (6√5 -16√5)/50 (rej)
ie
cosβ = 11√5/25
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询