什么是0阶无穷小,一阶无穷小和二阶无穷小?

 我来答
亦是如此
高粉答主

2021-10-14 · 往前看,不要回头。
亦是如此
采纳数:6378 获赞数:544464

向TA提问 私信TA
展开全部

一、x-->0,x是一阶无穷小,x^2是二阶无穷小,则x^3是三阶无穷小。

无穷小量,是极限为零的量,即若x→0时,limf(X)=0,则称f(X)是当x→0时的无穷小量,简称无穷小。同阶无穷小量,其主要对于两个无穷小量的比较而言,意思是两种趋近于0的速度相仿。

同阶无穷小:

如果lim F(x)=0,lim G(x)=0,且lim F(x)/G(x)=c,c为常数并且c≠0,则称F(x)和 G(x)是同阶无穷小。例如:

计算极限:lim(1-cosx)/x^2在x→0时,得到值为1/2,则说在x→0时,(1-cosx)与x^2是同阶无穷小。

例如,因为:

所以,在 x→3 的过程中,x2-9 与 x-3 是同阶无穷小。意思是在x→3 的过程中,(x2-9)→0 与 (x-3)→0的快慢一样。

无穷小的比较:

观察无穷小比值的极限。

两个无穷小比值极限的各种不同情况,反映了不同的无穷小趋于零的“快慢”程度。在x→0 的过程中,x→0 比 3x→0 “快些”。

反过来 3x→0 比 x→0 “慢些”,而 sin x→0 与 x→0 “快慢相仿”。

为了应用上的需要,我们就无穷小之比的极限存在或为无穷大时,给出下面的比较定义。

定义,设 α 及 β 都是同一个自变量的变化过程中的无穷小。

如果  ,就说β是比α高阶的无穷小,记为  

如果  ,就说β是比α 低阶的无穷小。

如果  ,就说β与α 是同阶无穷小。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式