
9个回答
展开全部
-(3n-3)(把括号展开)=n^-5n 4(合并同类项)这就可以了,你那最后一步是错的。数列化简首先展开...
追问
认真点行么?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1=2
an.a(n+1) - 2an + 1 =0
(1)
an.a(n+1) - 2an + 1 =0
an .[ a(n+1) -1 ] -an +1=0
an .[ a(n+1) -1 ] = an -1
1/{ an .[ a(n+1) -1 ] } = 1/( an -1)
1/[ a(n+1) -1 ] = an/( an -1)
= 1 + 1/( an -1)
1/[ a(n+1) -1 ] -1/( an -1) =1
=> { 1/(an-1) } 是等差数列, d=1
(2)
1/( an -1) - 1/( a1 -1) =n-1
1/( an -1) - 1 =n-1
1/( an -1) =n
an-1 = 1/n
an = 1+ 1/n
bn
= a(2^n) +n -1
= 1+ 1/2^n + n-1
=1/2^n + n
b1+b2+...+bn
= ( 1- 1/2^n) + n(n+1)/2
an.a(n+1) - 2an + 1 =0
(1)
an.a(n+1) - 2an + 1 =0
an .[ a(n+1) -1 ] -an +1=0
an .[ a(n+1) -1 ] = an -1
1/{ an .[ a(n+1) -1 ] } = 1/( an -1)
1/[ a(n+1) -1 ] = an/( an -1)
= 1 + 1/( an -1)
1/[ a(n+1) -1 ] -1/( an -1) =1
=> { 1/(an-1) } 是等差数列, d=1
(2)
1/( an -1) - 1/( a1 -1) =n-1
1/( an -1) - 1 =n-1
1/( an -1) =n
an-1 = 1/n
an = 1+ 1/n
bn
= a(2^n) +n -1
= 1+ 1/2^n + n-1
=1/2^n + n
b1+b2+...+bn
= ( 1- 1/2^n) + n(n+1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询