为什么两个幂级数相加后收敛半径是“至少为”原来两个收敛半径的最小值,难道不应该是恒等于吗?

 我来答
紫瞳艾伦1297
2021-11-13 · TA获得超过3472个赞
知道答主
回答量:561
采纳率:0%
帮助的人:9.5万
展开全部

不是恒等于,比如将一个收敛半径为一的一个级数,乘一个负号后和原来那个级数加在一起,得到零级数,它的收敛半径是正无穷大如果两个级数收敛半径R相等的情况下,在边界的位置和一段小区间内,他们同时发散,而发散级数加发散级数可能会收敛。这就是为什么相加后区间可能会扩大但是如果半径不相同,那就是最小值了。

数学:

数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式