为什么有界函数不一定收敛?
1个回答
展开全部
收敛函数就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性。
从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛,所以收敛必定有界,但是不一定上下界都有。
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
相关内容解释:
一般的级数u1+u2+...+un+...。它的各项为任意级数。如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛。则称级数Σun绝对收敛。
如果级数Σun收敛。而Σ∣un∣发散。则称级数Σun条件收敛。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询