因变量是分类变量,自变量有连续变量也有分类变量,用SPSS的什么方法做分析?
应该用logistic回归。前提是设计好变量类型。使用有序Logistic进行回归分析时,需要考虑4个假设:
假设1:因变量唯一,且为有序多分类变量,如血压水平可以分为高、中、低;某病的治疗效果分为痊愈、有效、无效等。
假设2:存在一个或多个自变量,可为连续、有序多分类或无序分类变量。
假设3:自变量之间无多重共线性。
假设4:模型满足比例优势假设。意思是无论因变量的分割点在什么位置,模型中各个自变量对因变量的影响不变,也就是自变量对因变量的回归系数与分割点无关。有序多分类的Logistic回归原理是将因变量的多个分类依次分割为多个二元的Logistic回归。
例如本例中因变量患者满意度有4个等级,分析时拆分为三个二元Logistic回归,分别为(0 vs 1+2+3) 、(0+1 vs 2+3)和(0+1+2 vs 3),均是较低级与较高级对比。在有序多分类Logistic回归中,假设几个二元Logistic回归的自变量系数相等,仅常数项不等。
结果也只输出一组自变量的系数。因此,有序多分类的Logistic回归模型,必须对自变量系数相等的假设(即比例优势假设)进行检验(又称平行线检验)。如果不满足该假设,则考虑使用无序多分类Logistic回归。
假设1-2都是对研究设计的假设,需要研究者根据研究设计进行判断。经过分析,本研究符合假设1和假设2,那么应该如何检验假设3、假设4,并进行有序Logistic回归呢?
广告 您可能关注的内容 |