求极限:lim(x→1)根号5x-4-根号x/x-1 是(√(5x-4)-√x)/x-1
1个回答
展开全部
lim[√(5x-4)-√x]/(x-1)
(x→1)
=
lim[√(5x-4)-√x][√(5x-4)+√x]/{[√(5x-4)+√x]*(x-1)}
(x→1)
=lim(4x-4)/{[√(5x-4)+√x]*(x-1)}
(x→1)
=lim4/[√(5x-4)+√x]
(x→1)
=4/[√(5-4)+√1]
=4/(1+1)
=2.
这个绝对是我自己做的,楼主,相信我吧,满意的话就接受吧!
(x→1)
=
lim[√(5x-4)-√x][√(5x-4)+√x]/{[√(5x-4)+√x]*(x-1)}
(x→1)
=lim(4x-4)/{[√(5x-4)+√x]*(x-1)}
(x→1)
=lim4/[√(5x-4)+√x]
(x→1)
=4/[√(5-4)+√1]
=4/(1+1)
=2.
这个绝对是我自己做的,楼主,相信我吧,满意的话就接受吧!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询