数学小报图片
2018数学小报图片鉴赏
2018数学小报图片一
2018数学小报图片二
2018数学小报图片三
2018数学小报图片四
2018数学小报图片五
2018数学小报图片内容一:如何预习数学教材
(一)读—由粗到精
拿过教材后,先将预习内容浏览一遍,了解本节要学习什么内容,确定出预习的重点,然后根据重点内容再进行精读.
在预习过程中,对概念、定义、定理、公式等的理解是最重要的,它们是解决问题的关键.因此在预习这部分内容时,重点不是放在对它们的记忆上,而是放在对它们的理解和推导上.不仅要能用自己的语言叙述它们的内涵,也会进一步用符号语言、图形语言来表达它们的实质,更要结合已有的知识对它们进行证明,并达到会对公式进行适当的变形,也会判断定理的逆命题是否成立的目的.
(二)写—做好记录
在预习过程中,同学往往有许多不明白的地方,可以在书上记录一些自己的看法及不明白的.问题,以便上课时,通过老师的讲解、同伴们的合作,充分探究知识的内涵,从而加深自己对知识的理解,形成符合自己认知特点的知识结构.
三、练—初步应用
应用所学知识解决问题是数学学习的目的.在预习过程中,要求在预习完知识点后,再预习例题,并将课本中配套的简单练习做一下.
在预习例题时,要做好如下思考:属于哪种类型题,涉及到哪些知识点?用到什么解题方法?每一步的依据是什么?有没有其它解题方法?等等.课本例题的选取是极有代表性的题目,它的难度通常不太大,多是对所学新知识的简单利用,在理解概念、定义、定理及公式的基础上,完全有能力自己去解决.为了巩固预习效果,需要做适量的练习,教材中的简单的、与例题相似的题目是我们自学时最好的练习.
四、思—总结提升
在预习过程中会产生各种各样的问题,会犯各式各样的错误,通过反思加深对存在问题的记忆,以便上课时在教师和同学的帮助下,有针对性地解决.
2018数学小报图片内容二:数学思想及常见的解题方法
(一)数学思想
常见的有四大数学思想:函数与方程、转化与化归、分类讨论、数形结合.
1.函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型,然后通过解方程(组)来使问题获解.函数与方程有密切的关系,如一元一次函数baxy,就可以看作关于x、y的二元方程0ybax;二元方程0ybax可以看成y是x的一次函数.可以说,函数的研究离不开方程.列方程、解方程和研究方程的特性,都是应用方程思想的体现.
2.转化与化归 转化与化归是把不熟悉、不规范、复杂的问题转化为熟悉、规范、简单的问题.它可以在数与数、形与形、数与形之间进行转换;消元法、换元法、数形结合法、求值求范围问题等等,都体现了转化与化归思想.如很多四边形的问题可以转化为三角形的问题来研究;研究两直线的位置关系可以转化为研究角的数量关系;如学完初一有理数的运算法则后,将几种运算法则综合起来去认识:减法、乘法是转化为加法来研究的,除法、乘方是转化为乘法来研究的.再如求不规则图形的面积可以将其分割或将其补充,转化为规则图形来求,等等.
3.分类讨论 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论思想.引起分类讨论的原因主要是以下几个方面:
(1) 问题所涉及到的数学概念是分类进行定义的.如|a|的定义分a>0、a=0、a<0三种情况.
(2) 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的.如点与圆的位置关系可以分为三种情况.
(3) 解含有参数的题目时,必须根据参数的不同取值范围进行讨论.如研究二次函数cbxaxy2的图象的开口方向时,分a>0和a<0两种情况讨论;研究其图象与x轴的位置时,就△>0,△>0,△<0,△=0三种情况进行考虑.
(4)解某些条件开放题时,需要根据条件的几种可能情况进行分类.如“过一个三角形一边上一点,做一条直线,将原三角形分为两部分,使截得的三角形与原三角形相似,共有几种办法”,这就需要就直线的位置进行分类,共有四种办法.再如证明圆周角定理时,就圆心在圆周角的内部、外部、边上三种情况进行证明等.
进行分类讨论时,要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复.