
∫cscxdx的不定积分是什么?
1个回答
展开全部
∫cscxdx的不定积分是:
=∫1/sinxdx
=∫sinx/sin^2xdx
=-∫1/(1-cos^2x)dcosx
=-1/2∫[1/(1-cosx)+1/(1+cosx)]dcosx
=1/2ln(1-cosx)-1/2ln(1+cosx)+C。
cscx的不定积分求∫cscx的不定积分:
=∫1/sinx dx。
=∫1/[2sin(x/2)cos(x/2)] dx,两倍角公式。
=∫1/[sin(x/2)cos(x/2)] d(x/2)
=∫1/tan(x/2)*sec²(x/2) d(x/2)
=∫1/tan(x/2) d[tan(x/2)],注∫sec²(x/2)d(x/2)=tan(x/2)+C。
=ln|tan(x/2)|+C。
进一步化简:
=ln|sin(x/2)/cos(x/2)|+C。

2025-04-21 广告
积分球是一个内壁涂有白色漫反射材料的空腔球体,又称光度球,光通球等。 球壁上开一个或几个窗孔,用作进光孔和放置光接收器件的接收孔。积分球的内壁应是良好的球面,通常要求它相对于理想球面的偏差应不大于内径的0.2%。球内壁上涂以理想的漫反射材料...
点击进入详情页
本回答由上海蓝菲提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询